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Overview of this talk

Local subcell monolithic DG/FV scheme
for nonlinear shallow water equations
with source terms on unstructured grids

Some keywords.
▶ Local subcell monolithic DG/FV scheme: combines DG accuracy with

FV robustness for stabilization;
▶ Nonlinear shallow water equations: describe the water waves under the

hydrostatic assumption;
▶ Source terms: account for geometry and physical effects (e.g., topography,

friction)

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Shallow water asymptotics

Nonlinear shallow water (NSW) equations

∂tv + ∇x · F(v, b) = B(v,∇xb)

⇔
{
∂tη + ∇x · q = 0,
∂tq + ∇x ·

(
u ⊗ q + gη

2 (η − 2b)I2
)

= −gη∇xb

▶ b : R2 → R is the topography parametrization;
▶ v : R2 × R+ → H+ is the vector gathering total elevation η and

discharge (qx , qy )T , with H+ = {(η, qx , qy ) ∈ R3 | H := η − b ≥ 0};
▶ F : H+ × R → M2×3(R) is the nonlinear flux tensor;
▶ B : H+ × R → R3 is the source term depending on topography.

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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An overview of Finite Volume schemes

Multidimensional conservation law

∂tU(x, t) + ∇ · F(U(x, t)) = 0, U ∈ Rm, x ∈ Ω, ωc ⊂ Ω

▶ Uωc (t) = 1
|ωc |

∫
ωc

U(x, t) dx

▶ Uωc (tn+1) = Uωc (tn) − 1
|ωc |

∫ tn+1

tn

∫
∂ωc

F(U(x, t)) · n∂ωc dS dt

Finite Volume discretization and scheme

▶ Domain partition: Ω =
⋃

c ωc , with each ωc a control volume
▶ Vc : set of neighbors sharing an edge with ωc

▶ ℓcv : length of the interface ωc ∩ ωv

▶ Piecewise constant solution: Un+1
c = Un

c − ∆tn

|ωc |
∑
v∈Vc

ℓcv F
∗
cv

where F∗
cv is a numerical approximation of the flux across the interface.

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Finite Volume schemes: pros and cons

Advantages Ë

▶ Natural conservation across
interfaces

▶ Applicable on general
(unstructured) meshes

▶ Easy to implement for complex
geometries

▶ Robust even on nonlinear
problems

Limitations é

▶ Low-order accuracy without
reconstruction

▶ Extension to high-order schemes
leads to large stencils

▶ Limited flexibility for hp-adaptivity

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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An overview of Discontinuous Galerkin methods

Weak formulation

▶ Partition of the domain: Th := {ω1, . . . , ωnel}, Ω =
⋃

ω∈Th
ω

▶
∫

ωc

∂tU(x, t)ψ(x) dx −
∫

ωc

F(U, b) · ∇xψ(x) dx

+
∫

∂ωc

F(U, b) · n∂ωc ψ(s) dS = 0, ∀ψ ∈ C1
0(ωc)

Discontinuous Galerkin discretization

▶ Piecewise polynomial solution, discontinuous across interfaces:

Uc
h(x, t) =

dim Pk∑
m=1

Uc
m(t)ϕc

m(x), ∀x ∈ ωc , ∀t ∈ [0, tmax],

where the Uc
m(t) are the local DOFs and ϕc

m(x) are the basis functions
▶ As in FV framework, numerical flux F∗ replaces F(U) · n∂ωc on ∂ωc

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Discontinuous Galerkin methods: pros and cons

Advantages Ë

▶ High-order accuracy with compact
stencils

▶ Natural conservation across
interfaces

▶ Suited for hp-adaptivity
▶ Well-suited for easy parallel

computing
▶ Flexible for any meshes

(unstructured, polytopal, etc.)

Limitations é

▶ More involving to implement than
FV methods

▶ Non-physical oscillations when
approaching strong gradients or
discontinuities (like every scheme
of order ≥ 2)

▶ Lack of nonlinear stability

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Ideal setup for the NSW system

An ideal numerical scheme for the Nonlinear Shallow Water (NSW) equations
should be:
▶ High-order accurate to capture smooth solutions and small-scale features;
▶ Shock-capturing to handle discontinuities and strong nonlinearities;
▶ Positivity-preserving to ensure non-negative water height and physical

admissibility (i.e. stays in H+);
▶ Well-balanced to exactly preserve lake at rest steady states;
▶ Adaptable to source terms such as bottom topography and friction

effects;
▶ Well-suited for unstructured meshes to deal with complex geometries

and realistic domains.

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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DG formulation through residuals

DG formulation for all ψc
p ∈ Pk(ωc)

Nk∑
m=1

dvc
m

dt

∫
ωc

ψc
mψ

c
p dx −

∫
ωc

F · ∇xψ
c
p dx +

∫
∂ωc

F∗ · n ψc
p dS =

∫
ωc

Bψc
p dx

Residual DG formulation for any basis function ψc
m ∈ Pk(ωc)

Mc
dVc
dt = Φc + Sc

▶ (Vc)m = vc
m(t) solution moments

▶ (Mc)mp =
∫

ωc

ψc
m(x)ψc

p(x) dx local mass matrix

▶ (Φc)m =
∫

∂ωc

F∗ · n ψc
p dS −

∫
ωc

F(vc
h, bc

h) · ∇xψ
c
p dx DG residuals

▶ (Sc)m =
∫

ωc

B(vc
h,∇xbc

h)ψc
p dx source term

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Stabilization principle

▶ Classical stabilization: apply limiters/a posteriori correction on the full cell
↪→ risks discarding a mostly accurate solution due to a local failure

▶ Subcell approach: partition each cell into finer subcells to reduce the
correction scale
↪→ enabling a surgical correction, meaning only fix what’s necessary,
preserving as much of the high-order DG content as possible

Theory needed − Reformulation of DG as a subcell FV-like scheme

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Mesh subdivision

Cell subdivision into Ns ≥ Nk subcells

Cell ωc subdivided into Ns = Nk subcells for P1 (left), P2 (center) and P3 (right) cases

Cell ωc subdivided into Ns ≥ Nk subcells for P1 (left), P2 (center) and P3 (right) cases

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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A classical mesh ...
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Figure: Unstructured simplicial mesh with nel = 350 cells.
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... and its subdivision
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Figure: Unstructured simplicial mesh P3 subdivision onto triangles with nel = 350 cells.
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Subdivision and submean values

Some notations

▶ For any element ωc ∈ Th, we define a sub-partition:

Tωc := {Sc
1 , . . . ,Sc

Ns
}, ωc =

Ns⋃
m=1

Sc
m

▶ Γc
mp: interface between Sc

m and its neighbor Sv
p

▶ nm
f : number of faces of subcell Sc

m
▶ FSc

m
: set of all faces of Sc

m
▶ nc

f : total number of subcell faces inside element ωc

▶ Vc
m: set of face-neighboring subcells of Sc

m (with |Vc
m| = nm

f )
▶ V̆c

m: subset of Vc
m containing only neighbors within the same element ωc

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Subneighbors

Figure: Two cases: subneighbor Sp inside cell ωc (left), and subneighbor Sp inside neighbor cell ωv (right).

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Submean values and polynomial moments (1)

Mean value of a function over a subcell Sc
m ⊂ ωc

For any f ∈ L2(ωc), the subcell mean value is f c
m := 1

|Sc
m|

∫
Sc

m

f (x) dx.

Submean values and projection matrix

▶ (Vc)m = vc
m(t) submean values

▶ (Pc)mp = 1
|Sc

m|

∫
Sc

m

ψc
p(x) dx projection matrix

vc
m(t) = 1

|Sc
m|

Nk∑
q=1

vc
q(t)

∫
Sc

m

ψc
q(x) dx =⇒ Vc = PcVc

� Pt
cPc has to be non-singular, so we use the least-square procedure:

Vc =
(
Pt

cPc
)−1

Pt
cVc

If Ns = Nk , then Vc = PcVc ⇔ Vc = P−1
c Vc .

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Submean values and polynomial moments (2)

Figure: Piecewise polynomial function v i
h and associated sub-mean-values (1D case).

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Reconstructed DG fluxes (1)

Submean values vector derivative

Since Mc
dVc
dt = Φc + Sc and Vc = PcVc =⇒ dVc

dt = PcM
−1
c (Φc + Sc)

Flux reconstruction to get a FV-like scheme

Let us consider the DG reconstructed flux F̂n such that
dvc

m
dt = − 1

|Sc
m|

∫
∂Sc

m

F̂n(x) dx + (PcM
−1
c Sc)m (FV-like scheme)

= − 1
|Sc

m|
∑

Sv
p ∈Vc

m

∫
Γc

mp

F̂n(x) dx + (PcM
−1
c Sc)m

(
∂Sc

m = ∪Sv
p ∈Vc

m
Γc

mp

)

= − 1
|Sc

m|

 ∑
Sv

p ∈V̆c
m

∫
Γc

mp

F̂n(x) dx +
∫

∂ωc ∩∂Sc
m

F∗
n dx

+ (PcM
−1
c Sc)m

under the hypothesis that F̂n|∂ω = F∗ for all ω ∈ Th.
Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Reconstructed DG fluxes (2)

Interface reconstructed flux

We define F̂mp at interface Γc
mp as:

∫
Γc

mp

F̂n(x) dx = εc
mpF̂mp,

where subface orientation is carried through εc
mp, such that εc

pm = −εc
mp.

Reconstructed flux system

−AcF̂c = Dc
dVc
dt + ∂Fc

▶ (F̂c)mp = ℓmpF̂mp interior subfaces fluxes
▶ (Ac)mp = εc

mp adjacency matrix
▶ (Dc)m = |Sc

m| subvolume matrix

▶ (∂Fc)m =
∫

∂ωc ∩∂Sc
m

F∗
n dx cell boundary contribution

� Since kerAc ̸= {0}, we use a Graph Laplacian technique

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Reconstructed DG fluxes (3)

Residual definition of reconstructed fluxes

F̂c = −At
cL−1

c
(
DcPcM

−1
c Φc + ∂Fc

)
where L−1

c is the gen. inverse of Lc := AcA
t
c on the orthogonal of its kernel:

L−1
c = (Lc + λΠ)−1 − 1

λ
Π, Π = 1

Ns
(1 ⊗ 1) ∈ MNk , ∀λ ̸= 0

� R. Abgrall, Some Remarks about Conservation for Residual Distribution
Schemes. Methods Appl. Math., 18:327-351, 2018.

Few remarks
▶ Source term is excluded in the definition since only flux-dependent

integrals are considered in reconstruction;
▶ Implementation: only Φc and boundary terms ∂Fc depend on time, but

all the other terms are precomputable;
▶ Alternative expression: using spanning set of subresolution functions
ϕc

m = pk
ωc

(1c
m), where pk

ωc
is the L2-projector on cell ωc .

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids



Discontinuous Galerkin as a subcell Finite Volume scheme → Flux reconstruction 18/33

DG schemes ≡ Subcell FV schemes

Theorem (equivalence of DG and subcell FV schemes)

The NSW-DG residual scheme dVc
dt = M−1

c (Φc + Sc) can be recast into Ns
FV-like subcell schemes as

dVc
dt = −D−1

c

(
AcF̂c + ∂Fc

)
+ Sc

where Sc := PcM
−1
c Sc contains the submean values of source term projection,

i.e.
Bc

m := 1
|Sc

m|

∫
Sc

m

pk
ωc

(B(vh,∇xbh)) dx.

DG equivalent semi-discrete scheme on every subcell Sc
m ⊂ ωc

dvc
m

dt = − 1
|Sc

m|
∑

Sv
p ∈Vc

m

ℓmpF̂mp + Bc
m, ∀m ∈ J1,NsK

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Combining DG and FV frameworks (1)

Finite Volume scheme � robustness � 1st order accuracy

+

Discontinuous Galerkin scheme � k th order accuracy � robustnessw�
Monolithic DG-FV subcell scheme � k th order accuracy & robustness

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Combining DG and FV frameworks (2)

Our numerical solution should satisfy the following properties:

▶ Accuracy: high-order precision can be required
↪→ natural in DG schemes; requires mesh refinement in FV schemes

▶ Physical admissibility: in NSW context, the solution should stay in H+

↪→ automatic in FV schemes; requires dedicated techniques in DG schemes

▶ Stability / No spurious oscillations: satisfy a discrete maximum principle
↪→ guaranteed in FV schemes; not ensured by DG schemes (limiters needed)

Idea − blending DG reconstructed fluxes and FV fluxes at subcell scale

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Combining DG and FV frameworks (3)

Blended fluxes and blending coefficient

For every face Γc
mp ∈ FSc

m
, the high-order DG reconstructed flux F̂mp and a

first-order FV flux F∗,FV
mp are assembled in a convex way:

F̃mp = F∗,FV
mp + θmp

(
F̂mp − F∗,FV

mp

)
= F∗,FV

mp + θmp∆Fmp

� The blending coefficient θmp ∈ [0, 1] is:
▶ computed a priori on each Γc

mp, at each time step (or RK stage);
▶ uniquely defined i .e. θmp = θpm, for all Sv

p ∈ Vc
m.

Monolithic DG-FV subcell scheme with forward Euler time integration

vc,n+1
m = vc,n

m − ∆tn

|Sc
m|

∑
Sv

p ∈Vc
m

ℓmpF̃mp + ∆tnBc,n
m , ∀m ∈ J1,NsK

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Source term treatment

Flowchart of the discretization
� Bridging polynomial degrees of freedom and subcell-averaged values
1. Subcell averages: compute bc

m and ηc
m on each subcell, then reconstruct

bh and ηh via projection matrix Pc ;
2. Projection: evaluate B(vh,∇xbh) at quadrature nodes, then apply an L2

projection onto Pk ;
3. Integration: compute the mean value of the projected source over each

subcell:
Bc

m := 1
|Sc

m|

∫
Sc

m

Bh dx

Implementation remark

Formally corresponds to multiplying the DG source integral by PcM
−1
c :

Bc
m = PcM

−1
c

(∫
ωc

Bhφh dx
)

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Generalization to algebraic/geometric source terms

Topography and (nonlinear) friction effects

S(v, b) := B(v,∇xb) + Fr(v, b)

▶ B(v,∇xb) = (0,−gη∇xb)t Topography source term

▶ Fr(v, b) =


(
0,−k2

f q
)t
, kf > 0 Linear friction law(

0,−n2
f

q ∥q∥
(η − b)γ

)t
, nf , γ > 0 Manning friction law

? Handled the same way as previously → easily generalizable

Applications to Serre–Green–Naghdi (SGN) equations

Reformulation: Elliptic problem + NSW with dispersive source term
1. Elliptic problem solved independently, using a finite element method;
2. Resulting dispersive source term discretized within the NSW framework.

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Reformulation as a Godunov-like scheme

Solution at tn+1 as a convex combination of quantities defined at tn

vc,n+1
m = vc,n

m − ∆tn

|Sc
m|

∑
Sv

p ∈Vc
m

ℓmpF̃mp + ∆tnBc,n
m

+ ∆tn

|Sc
m|
F
(

vc,n
m , bc

m

)
·
∑

Sv
p ∈Vc

m

ℓmpnmp ± σ∆tn

|Sc
m|

∑
Sv

p ∈Vc
m

ℓmpvc,n
m

=

1 − σ∆tn

|Sc
m|

∑
Sv

p ∈Vc
m

ℓmp

 vc,n
m + σ∆tn

|Sc
m|

∑
Sv

p ∈Vc
m

ℓmp ṽ∗,−
mp + ∆tnBc,n

m

▶ ṽ∗,−
mp are the interior blended Riemann intermediate states

ṽ∗,−
mp := vc,n

m −
F̃mp − F

(
vc,n

m , bc
m

)
· nmp

σ
= v∗,−

mp − θmp

(
F̂mp − F∗,FV

mp
σ

)
;

▶ v∗,−
mp are the 1st-order FV Riemann intermediate states.

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Analytical formula to ensure water height positivity

Relying on 1st -order FV Riemann intermediate states

Proof of the natural preservation of water-height positivity for 1st -order el-
evation Riemann FV states η∗,±

mp

↪→ Allows us to rely on the robustness of FV framework to ensure the prop-
erties we want

Physical admissibility detector

θH+

mp := min
(
θH+,−

mp , θH+,+
mp

)

▶ θH+,−
mp :=

σ
(
η∗,−

mp − bc
m

)
∆Fmp

if ∆Fmp > 0, θH+,−
mp = 1 else;

▶ θH+,+
mp :=

σ
(

bv
p − η∗,+

mp

)
∆Fpm

if ∆Fpm < 0, θH+,+
mp = 1 else.

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Analytical formulas to prevent spurious oscillations

Mimicking a local maximum principle

αc
m := min

Sv
p ∈N (Sc

m)

(
ηv ,n

p , η∗,−
mp
)

≤ ηc,n+1
m ≤ max

Sv
p ∈N (Sc

m)

(
ηv ,n

p , η∗,−
mp
)

=: βc
m

where Pc
m is the set of vertices xp of subcell Sc

m and

N (Sc
m) :=

⋃
xp∈Pc

m

{Sq | xp ∈ Sq}

Subcell numerical admissibility detector

θSubNAD
mp := min

(
1,
∣∣∣∣ σ

∆Fmp

∣∣∣∣ {min
(
βv

p − η∗,+
mp , η

∗,−
mp − αc

m
)

if ∆Fmp > 0
min

(
βc

m − η∗,−
mp , η

∗,+
mp − αv

p
)

if ∆Fmp < 0

)
� For NSW, no local maximum principle for the conserved variable!
↪→ needs to be relaxed in the presence of smooth extremas
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Preservation of steady-states (1)

Why does it matter ?

▶ Preserves lake at rest steady states exactly, avoiding spurious
motions;

▶ Reduces numerical errors near equilibrium, especially when small
perturbations are present;

▶ Essential for wet/dry interfaces, where small oscillations can destabilize
the scheme.

Well-balancing (WB) property

Providing that the integrals of discrete formulation are exactly computed, we
have the following result:

∀n ∈ N, ∀ηe ∈ R, (ηn
h = ηe and qn

h = 0) =⇒
(
ηn+1

h = ηe and qn+1
h = 0

)

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Preservation of steady-states (2)

Sketch of proof

Objective: showing that numerical fluxes are cancelling the source term i .e.

1
|Sc

m|
∑

Sv
p ∈Vc

m

ℓmpF̃mp = Bc,n
m s.t. vc,n+1

m = vc,n
m .

▶ Exact integration required → natural with high-order quadrature;

▶ Under well-balanced assumptions:
∇x · F(vc , bc) = B(vc ,∇xbc), ∀ωc ∈ Th;

▶ Fluxes F̂mp and F∗,FV
mp match the continuous flux Fc

h · nmp under
equilibrium;

▶ F̃mp is built as a convex combination of these well-balanced fluxes
↪→ preserves equilibrium as well !
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Numerical results → Steady vortex with smooth topography 26/33

Test 1 − Order of accuracy assessment

Steady vortex with C∞ topography

▶ Domain: Ω = [−5, 5]2 Degree: k = 1, 2, 3 Mesh: nel = 200 → 12800
▶ Goal: convergence of the scheme on a smooth solution with a consistent

discretization of the topography source term

k 1 2 3

h Eη
L2 qη

L2 Eη
L2 qη

L2 Eη
L2 qη

L2

1 9.445E-2 2.35 1.529E-2 2.91 4.580E-3 4.19
1
2 1.854E-2 2.16 2.039E-3 3.03 2.505E-4 4.10
1
4 4.158E-3 2.07 2.491E-4 2.97 1.465E-5 4.00
1
8 9.923E-4 − 3.187E-5 − 9.165E-7 −

Figure: L2-errors between numerical and analytical solutions and convergence rates for η at time t = 0.1
sec.
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Figure: Steady vortex − Exact (left) and P3 numerical (right) height at final time t = 0.1 sec on 800 cells.
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Test 2 − Well-balancing assessment

Well-balancing with dry area

▶ Domain: Ω = [0, 2] × [0, 1] Degree: k = 4 Mesh: nel = 2064
▶ Goal: no stability issue, preservation of water-height positivity

Figure: P4 initial solution.
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Figure: At t = 20 sec, P4 elevation (top) and map of blending coefficient means per subcell (bottom).
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Test 3 − Dam-break problems (1)

Dam-break on a wet bed

▶ Domain: Ω = [0, 1000] × [0, 200] Degree: k = 4 Mesh: nel = 350
▶ Goal: handling shock waves and rarefaction fronts
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Figure: At t = 32 sec, P4 pure DG elevation (left) and monolithic DG/FV subcells elevation (right).
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Figure: At t = 18 sec, P4 unlimited DG elevation (top), monolithic DG/FV subcells elevation (center) and
map of blending coefficient means per subcell (bottom).
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Test 3 − Dam-break problems (2)

Dam-break on a dry bed with friction

▶ Domain: Ω = [0, 1000] × [0, 200] Degree: k = 3 Mesh: nel = 350
▶ Goal: treating wet/dry interfaces, supplemented with friction
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Figure: Snapshots of P3 free surface elevation and blending density profiles for t ∈ [10, 60] sec for kf = 0.5.
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Figure: At t = 30 sec, P3 elevation (top), discharge norm (center) and map of blending coefficient means
per subcell (bottom).
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Test 4 − Rock-wave interactions

Single wave collapsing on a Gaussian rock

▶ Domain: Ω = [5, 25] × [0, 30] Degree: k = 6 Mesh: nel = 584
▶ Goal: assessing robustness and correct shock-capturing in challenging

case

Figure: Unstructured simplicial
mesh P6 subdivision onto
triangles with nel = 584 cells.
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Figure: Snapshots of P6 elevation at several times (and link to simulation).
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Ph.D. objectives

We want an ideal scheme to solve the Nonlinear Shallow Water (NSW)
equations, such that we can then study:

wave-structure interactions

From the theory... to its potential applications...

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Ongoing and upcoming work

What has been done...

� S.C., A. Haidar, F. Marche & F. Vilar, Monolithic DG-FV subcell schemes
for nonlinear hyperbolic system with source terms. Applications to shallow water
asymptotics. In preparation. 2025.

� S.C., F. Marche & F. Vilar, Local monolithic DG-FV subcell scheme for
2D NSW on unstructured grids. In preparation. 2025.

... and what remains!

▶ Designing a mixed HHO/DG-FV subcells method for wave-structure
interactions;

▶ Adaptation of the method to moving or deforming meshes via an ALE
framework;

▶ Extension to Green-Naghdi equations in 2D case.

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids



Thank you for your attention!

Figure: The Great Wave of Kanagawa, Hokusai, 1830.

� E-mail: sacha.cardonna@umontpellier.fr
� Website: sachacardonna.github.io

mailto:sacha.cardonna@umontpellier.fr
https://sachacardonna.github.io
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Remark about quadrature on subcells
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Figure: Subdivision of a coarse mesh into subcells with their global numbering (left), alongside the
quadrature points for subcell interiors and faces (right).
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Remark about initialization

Initialization strategy

Initialization is performed via subcell averages followed by projection using
Pc , instead of L2 projection or interpolation as usually done in DG schemes
↪→ this guarantees vh ∈ H+ at t = 0, and enforces ηh = bh in dry zones
� Since bh is discontinuous across cells, hydrostatic reconstruction is applied
to both DG and subcell FV fluxes.
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Figure: P3 dam-break problem initialization.
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Remark about hydrostatic reconstruction

Assuring both WB and positivity in numerical fluxes

? Hydrostatic reconstruction framework used on both DG and subcell FV fluxes
↪→ ensures positivity of the water height, even for discontinuous topography
At each interface Γcv(k) (resp. subinterface Γmp(k)), reconstructed values are
defined:
▶ Topography rec.: b̃k = max(b−

k , b
+
k ), b̌k = b̃k − max(0, b̃k − η−

k )

▶ Water height/elevation rec.: Ȟ±
k = max(0, η±

k − b̃k), η̌±
k = Ȟ±

k + b̃k

▶ Modified states: v̌±
k =

(
η̌±

k ,
Ȟ±

k
H±

k
q±

k

)t

These are then used in a Lax-Friedrichs-type flux F∗, completed by a correction
term F̌cv(k) to ensure well-balancing:

F∗
cv(k) = F∗(v̌−

k , v̌
+
k , b̌k , b̌k ,ncv(k)) + F̌cv(k)

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Remark about source term treatment

Alternative discretization of the source term

Bc
m = Bc,FV

m + θc
m

(
Bc,DG

m − Bc,FV

m

)
▶ θc

m = 1
#Vc

m

∑
Sv

p ∈Vc
m

θmp subcell global blending

▶ Bc,DG

m = 1
|Sc

m|

∫
Sc

m

Bh dx DG source term

▶ Bc,FV

m = 1
|Sc

m|

∫
Sc

m

B(vc
m,∇xbc

h) dx FV source term

� No significant difference in results → we keep Bc
m = Bc,DG

m

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids



Complements 33/33

Remark about blending smoothening

Why smoothening blending coefficient?

A sharp switch between low and high-order fluxes (i.e., θmp = 0 vs. θmp = 1)
may cause local oscillations
↪→ blending smoothers designed to mitigate abrupt transitions

▶ Mean-value smoother (default in experiments):

θc
m = 1

#Vc
m

∑
Sv

p ∈Vc
m

θmp, θ̃mp = min

θmp,
1

#Vmp

∑
Sv

q ∈Vmp

θv
q


↪→ Less diffusive, smoother transitions

▶ Minimum-value smoother:

θc
m = min

Sv
p ∈Vc

m
θmp, θ̃mp = min

(
θmp, min

Sv
q ∈Vmp

θv
q

)
↪→ Stronger damping near discontinuities

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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