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Overview of this talk

Local subcell monolithic DG/FV scheme
for nonlinear shallow water equations
with source terms on unstructured grids

Some keywords.
» Local subcell monolithic DG/FV scheme: combines DG accuracy with
FV robustness for stabilization;
» Nonlinear shallow water equations: describe the water waves under the
hydrostatic assumption;
» Source terms: account for geometry and physical effects (e.g., topography,
friction)
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Introduction — Nonlinear shallow water equations

Shallow water asymptotics

Nonlinear shallow water (NSW) equations

OV + Vy - F(v, b) = B(v, Vib)

{atn+vx-q =0,
9:q+ V- (u® q+ &l(n — 2b)L,) = —gnVib

» b : R? = R is the topography parametrization;

» v :R? x R, — HT is the vector gathering total elevation 7 and
discharge (qx,q,)7, with H* = {(n,9x,q,) € R®| H:=n — b > 0};

> F:H" x R — Maysz(R) is the nonlinear flux tensor;

» B : Ht x R — R3 is the source term depending on topography.

z

H(z,t) = ((z,t) + Hy — b(z)
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Introduction — Finite Volume and Discontinuous Galerkin methods
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Introduction — Finite Volume and Discontinuous Galerkin methods

An overview of Finite Volume schemes

Multidimensional conservation law

0 U(x,t)+ V- -F(U(x,t))=0, UeR™ xe€Q, w.CQ

— 1

> U, (t) = U(x, t) dx

wel Jo

— _ thi1
| 2 Uwc(tn+l) = Uwc( n |w |/ /(9 )) Ny, dsS dt

Finite Volume discretization and scheme

» Domain partition: Q = UC wWe, With each w. a control volume

> V.: set of neighbors sharing an edge with w,
» /., length of the interface w. Nw,

At"
» Piecewise constant solution: U"+1 u? — Z Lo, F7,
Jwel
vEV:
where T is a numerical approximation of the flux across the interface.
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Introduction — Finite Volume and Discontinuous Galerkin methods

Finite Volume schemes: pros and cons

Advantages v

» Natural conservation across Limitations X
interfaces ;
) » Low-order accuracy without
» Applicable on general reconstruction

unstructured) meshes . .
( ) » Extension to high-order schemes

» Easy to implement for complex leads to large stencils

geometries ) » Limited flexibility for hp-adaptivity
» Robust even on nonlinear

problems

Local subcell monolithic DG/FV e for nonlinear shallow water equations with source terms on unstructured grids



Introduction — Finite Volume and Discontinuous Galerkin methods

An overview of Discontinuous Galerkin methods

Weak formulation

» Partition of the domain: 7, := {w1,...,wn,}, Q= Upes, @

> 0:U(x, t)¥(x) dx — / F(U, b) - Vyxt(x) dx

We We

+ [ BUb) o w9 ds =0, v e Ciwe)
Owe

Discontinuous Galerkin discretization

» Piecewise polynomial solution, discontinuous across interfaces:

dim P
US(x, t) Z US(t)65(x),  Vx€Ewe, VteO,tmal,

where the U¢ (t) are the local DOFs and ¢¢,(x) are the basis functions
> As in FV framework, numerical flux I replaces IF(U) - ng,,. on dw.
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Introduction — Finite Volume and Discontinuous Galerkin methods

Discontinuous Galerkin methods: pros and cons

Advantages v
» High-order accuracy with compact  Limitations X

stencils » More involving to implement than
» Natural conservation across FV methods

interfaces » Non-physical oscillations when
» Suited for hp-adaptivity approaching strong gradients or

discontinuities (like every scheme
of order > 2)

» Lack of nonlinear stability

» Well-suited for easy parallel
computing

» Flexible for any meshes
(unstructured, polytopal, etc.)
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Introduction — Motivations

Ideal setup for the NSW system

An ideal numerical scheme for the Nonlinear Shallow Water (NSW) equations
should be:

» High-order accurate to capture smooth solutions and small-scale features;

» Shock-capturing to handle discontinuities and strong nonlinearities;

» Positivity-preserving to ensure non-negative water height and physical
admissibility (i.e. stays in HT);

» Well-balanced to exactly preserve lake at rest steady states;

» Adaptable to source terms such as bottom topography and friction
effects;

» Well-suited for unstructured meshes to deal with complex geometries
and realistic domains.

Local subcell monolithic DG scheme for nonlinear shallow water equations with source terms on unstructured grids



Discontinuous Galerkin as a subcell Finite Volume scheme

Table of contents

2. Discontinuous Galerkin as a subcell Finite Volume scheme
DG general formulation
Mesh subdivision
Flux reconstruction

UNIVERSIT

Lnersritu cal subcell monol e for nonlinear shallow water equations with source terms on unstructured g



Discontinuous Galerkin as a subcell Finite Volume scheme — DG general formulation
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Discontinuous Galerkin as a subcell Finite Volume scheme — DG general formulation

DG formulation through residuals

rall ¢S5 € P¥(wc)

N

dVC *
Zd—t'"/z/};z/}f,dx—/lb“-vxw;dx—i—/lﬁ‘ ~n¢f,dS:/Bw;dx
m=1 We We 16) We

We

> (Vo)m = v5, (1) solution moments

> (Mo)mp = [ ¥m(x)¥p(x)dx local mass matrix

> (P)m = /[9 F* - nypodS — [ (v, by) - Ve, dx DG residuals

> (Sc)m = / B(vj, Vxbp) ¥, dx source term

IMAG B (N SevERsiTin Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids



Discontinuous Galerkin as a subcell Finite Volume scheme — DG general formulation

Stabilization principle

» Classical stabilization: apply limiters/a posteriori correction on the full cell

< risks discarding a mostly accurate solution due to a local failure

» Subcell approach: partition each cell into finer subcells to reduce the
correction scale

< enabling a surgical correction, meaning only fix what’s necessary,
preserving as much of the high-order DG content as possible

Theory needed — Reformulation of DG as a subcell FV-like scheme

Local subcell monolithic DG/FV e for nonlinear shallow water equations with source terms on unstructured grids



Discontinuous Galerkin as a subcell Finite Volume scheme — Mesh subdivision
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Discontinuous Galerkin as a subcell Finite Volume scheme — Mesh subdivision

Mesh subdivision

Cell subdivision into Ns > Ny subcells

S5

S

S5 ss /85 /g c

Cell wc subdivided into Ns > Ny subcells for P! (left), P? (center) and P? (right) cases
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Discontinuous Galerkin as a subcell Finite Volume scheme — Mesh subdivision

A classical mesh ...
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Discontinuous Galerkin as a subcell

inite Volume scheme — Mesh subdivision

and its subdivision
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Discontinuous Galerkin as a subcell Finite Volume scheme — Mesh subdivision

Subdivision and submean values

Some notations

» For any element w. € .7}, we define a sub-partition:

T =1{S5,...,S5}, w.=]3

[hp: interface between ST and its neighbor 57

n{": number of faces of subcell Sf,

Fse: set of all faces of S,

ng: total number of subcell faces inside element w,

V<. set of face-neighboring subcells of S5, (with |V5| = nf")

V VVvyVYyYVyYy

15,;: subset of V¢, containing only neighbors within the same element w,

Local subcell monolithic DG/FV e for nonlinear shallow water equations with source terms on unstructured grids



Discontinuous Galerkin as a subcell Finite Volume scheme — Mesh subdivision

Subneighbors

Figure: Two cases: subneighbor S, inside cell w. (left), and subneighbor S, inside neighbor cell w, (right).

prb S ocal subcell monol V scheme for nonlinear shallow water equations with source terms on unstructured grids



Discontinuous Galerkin as a subcell Finite Volume scheme — Mesh subdivision

Submean values and polynomial moments (1)

Mean value of a function over a subcell S5, C wc

— 1
For any f € [?(w.), the subcell mean value is 7, 53 f(x) dx.
ml JSg,
Submean values and projection matrix
> (V)m = V5 ( submean values
> (P )mp = S / wp(x projection matrix

| /111‘ )dx =

A PLP. has to be non-singular, so we use the least-square procedure:

V. = (PIP,) ' PV,

If Ny = N, then V. =P .V, & V. =P 'V,

al subcell monolithic DG/FV e for nonlinear shallow water equations with source terms on unstructured grids



Discontinuous Galerkin as a subcell Finite Volume scheme — Mesh subdivision

Submean values and polynomial moments (2)

Figure: Piecewise polynomial function v; and associated sub-mean-values (1D case).

Lunerstitw Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids



Discontinuous Galerkin as a subcell Finite Volume scheme — Flux reconstruction
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Discontinuous Galerkin as a subcell Finite Volume scheme — Flux reconstruction

Reconstructed DG fluxes (1)

Submean values vector derivative

dVv

C=P.M_ (b, +S,)

V.
Since M. ddt =¢.+Scand V. =P .V, —

Flux reconstruction to get a FV-like scheme

Let us consider the DG reconstructed flux ﬁ‘,, such that

v = _LC IAF,,(x) dx 4+ (P.M'S.), (FV-like scheme)
dt |5 | Jose
_ 5c Z/ Fo(x) dx+ (PeM;'S0) (955, = Usyevs 6y )
| Svevc
= dx+/ Frdx | + (P.MZ'S,),,
|SC Z / BweNASE, ( )

under the hypothesis that IAF,,‘aw =T for all w € .

UNIVERSITE ¢
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Discontinuous Galerkin as a subcell Finite Volume scheme — Flux reconstruction

Reconstructed DG fluxes (2)

Interface reconstructed flux

We define IAF,,,,J at interface I'7,, as: /r F,(x)dx = 5fnp]?‘mp,
where subface orientation is carried throumgh Emp» Such that e, = —ef .
Reconstructed flux system
~ dV.
—AF. =D oF
c+C c dt + Cc
> (f‘c)mp = Kmpf‘mp interior subfaces fluxes
» (Ac)mp = €mp adjacency matrix
> (D)m = |S5)| subvolume matrix
> (OF.)m = / F; dx cell boundary contribution
Bw NDSE,
A Since ker A, # {0}, we use a Graph Laplacian technique

Local subcell monolithic DG/FV e for nonlinear shallow water equations with source terms on unstructured grids



Discontinuous Galerkin as a subcell Finite Volume scheme — Flux reconstruction

Reconstructed DG fluxes (3)

Residual definition of reconstructed fluxes

F,=-AlL (D PMS 0, + OF,)

where £_1 is the gen. inverse of L. := A Al on the orthogonal of its kernel:

11 1
L2 = (L + AN) 17Xr|, n:ﬁ(1®1)eMNk, YA #£0
5

B R Abgrall, Some Remarks about Conservation for Residual Distribution
Schemes. Methods Appl. Math., 18:327-351, 2018.

Few remarks

» Source term is excluded in the definition since only flux-dependent
integrals are considered in reconstruction;

» Implementation: only ®. and boundary terms OIF. depend on time, but
all the other terms are precomputable;

» Alternative expression: using spanning set of subresolution functions
¢S, = pk_(15,), where p¥ is the L-projector on cell w..

UNIVERSITE
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Discontinuous Galerkin as a subcell Finite Volume scheme — Flux reconstruction

DG schemes = Subcell FV schemes

Theorem (equivalence of DG and subcell FV schemes)

The NSW-DG residual scheme Zfc = IM_*(®. + Sc) can be recast into N;
FV-like subcell schemes as

dV. o
=-D
dt

(ijc n ach) +5.

where S = IPC]MC_ISC contains the submean values of source term projection,
i.e.

=€

1
B, = —/ pL_ (B(vh, Vibp)) dx.
|5m| S5

DG equivalent semi-discrete scheme on every subcell S¢, C w,

%——LZE F,p+ B, vm € [1, Ny]
dt — |SC| mpt mp m» s Vs

M Syeve

Local subcell monolithic DG/FV e for nonlinear shallow water equations with source terms on unstructured grids



Monolithic DG-FV subcell scheme
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Monolithic DG-FV subcell scheme — Formulation
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Monolithic DG-FV subcell scheme — Formulation

Combining DG and FV frameworks (1)

Finite Volume scheme s robustness " 1%t order accuracy

Discontinuous Galerkin scheme »é k" order accuracy " robustness

Monolithic DG-FV subcell scheme sé k" order accuracy & robustness

prb S Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids




Monolithic DG-FV subcell scheme — Formulation

Combining DG and FV frameworks (2)

Our numerical solution should satisfy the following properties:

» Accuracy: high-order precision can be required
< natural in DG schemes; requires mesh refinement in FV schemes

» Physical admissibility: in NSW context, the solution should stay in H™
< automatic in FV schemes; requires dedicated techniques in DG schemes

> Stability / No spurious oscillations: satisfy a discrete maximum principle
— guaranteed in FV schemes; not ensured by DG schemes (limiters needed)

Idea — blending DG reconstructed fluxes and FV fluxes at subcell scale

al subcell monolithic DG/FV e for nonlinear shallow water equations with source terms on unstructured grids



Monolithic DG-FV subcell scheme — Formulation

Combining DG and FV frameworks (3)

Blended fluxes and blending coefficient

For every face I'f,, € Fsc, the high-order DG reconstructed flux ]?‘mp and a
first-order FV flux TF;;0" are assembled in a convex way:

Frp = F2Y + 01 (Emp _ F;;;;V) — F5 4 OpAF

mp

A The blending coefficient 0,,, € [0,1] is:
» computed a priori on each 'y, . at each time step (or RK stage);

» uniquely defined i.e. 01p = Opm, for all Sy € Vi

Monolithic DG-FV subcell scheme with forward Euler time integration

A

m m ‘SC|
m

> lmpFmp + At"BL, Ym € [1,Nd]
Syevs,

UNIVERSITE w Local subcell monolithic DG, scheme for nonlinear shallow water equations with source terms on unstructured grids
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Monolithic DG-FV subcell scheme — Source term treatment
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Monolithic DG-FV subcell scheme — Source term treatment

Source term treatment

Flowchart of the discretization

@ Bridging polynomial degrees of freedom and subcell-averaged values

1. Subcell averages: compute E,Cn and 75, on each subcell, then reconstruct
by and nj, via projection matrix P;

2. Projection: evaluate B(vy, Viby,) at quadrature nodes, then apply an L2
projection onto PX;

3. Integration: compute the mean value of the projected source over each
subcell: q
~E
B, = — B, dx
T 1Sel s

Implementation remark

Formally corresponds to multiplying the DG source integral by IPCIMZI:

E; = IPCIM;l </ Bron dX)

c

Local subcell monolithic DG/FV

e for nonlinear shallow water equations with source terms on unstructured grids



Monolithic DG-FV subcell scheme — Source term treatment

Generalization to algebraic/geometric source terms

Topography and (nonlinear) friction effects

|S(v, b) := B(v, Vib) + Fr(v, b) |

» B(v,V,b) = (0, —gnVixb)* Topography source term
(0, —k? q)t7 ke >0 Linear friction law

_ t
> Fr(v, b) = (0, —n? %) , ne,y >0 Manning friction law

© Handled the same way as previously — easily generalizable

Applications to Serre-Green—-Naghdi (SGN) equations

Reformulation: Elliptic problem + NSW with dispersive source term
1. Elliptic problem solved independently, using a finite element method,;
2. Resulting dispersive source term discretized within the NSW framework.

UNIVERSITE o
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Monolithic DG-FV subcell scheme — Computation of the blending coefficient
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Monolithic DG-FV subcell scheme — Computation of the blending coefficient

Reformulation as a Godunov-like scheme

Solution at t"t1 as a convex combin

At" = —=c,n
ot — go :
vt = fn”—‘ ] > lwmpFmp + At"B,,
SyeVe,
At . frAt" _
+ @F (Vfr;n, bm) . Z Empnmp m Z (mpV,Cnn
Syevs SveVs,
O'At _ O'At —c,n
=|1- Z lp | V" + Z CpVrmp + At"B,
Sl SyeVs, S5l SyeVe,
» v, are the interior blended Riemann intermediate states
_ c n . m *,FV
mp m o mp mp o
» v, are the 1*-order FV Riemann intermediate states.
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Monolithic DG-FV subcell scheme — Computation of the blending coefficient

Analytical formula to ensure water height positivity

Relying on 1°t-order FV Riemann intermediate states

Proof of the natural preservation of water-height positivity for 15:-order el-
evation Riemann FV states 1y

< Allows us to rely on the robustness of FV framework to ensure the prop-
erties we want

Physical admissibility detector

HE HY— pgH"+
Omp = min (Omp s Orp

@
(i -5
> 971';1[;7_ = # if AIIf—‘mp > 0, 97,.;71;’_ =1 else;
mp
+ g (bv - "7*7+)
> 9%,, = # if AF,nm <0, 9#;* =1 else.
pm
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Monolithic DG-FV subcell scheme — Computation of the blending coefficient

Analytical formulas to prevent spurious oscillations

Mimicking a local maximum principle

c . min —v,n %k, ,— <7c,n+1< max 7N gt =) = B¢
= g i @y M) < Ty S @ e ) =2 B

where Pf, is the set of vertices x, of subcell S§, and

N(Sq) = U {Sq | xp € 5S¢}

x, €PE,

Subcell numerical admissibility detector

gSubNAD . (g a min (5; — G, Gy = Offn) if AF,, >0
mp | AF | \min (85 — sy, it — %) if AT < 0

A For NSW, no local maximum principle for the conserved variable!

< needs to be relaxed in the presence of smooth extremas
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Monolithic DG-FV subcell scheme — Well-balancing property
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Monolithic DG-FV subcell scheme — Well-balancing property

Preservation of steady-states (1)

Why does it matter 7

» Preserves lake at rest steady states exactly, avoiding spurious
motions;

» Reduces numerical errors near equilibrium, especially when small
perturbations are present;

» Essential for wet/dry interfaces, where small oscillations can destabilize
the scheme.

Well-balancing (WB) property

Providing that the integrals of discrete formulation are exactly computed, we
have the following result:

VneN, Vn°eR, (np=n°andq)=0)= (n;"' =7°and q;"" =0)
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Monolithic DG-FV subcell scheme — Well-balancing property

Preservation of steady-states (2)

Sketch of proof

Objective: showing that numerical fluxes are cancelling the source term i.e.

<C,n+1 __ —c,n
E EmpIF = =B s.t. v =gl
Syevy,

» Exact integration required — natural with high-order quadrature;
» Under well-balanced assumptions:

Vi - F(ve, be) = B(ve, Vibe), Ywe € T;

» Fluxes I, and IF,;.’ match the continuous flux Fj, - ny, under
equilibrium;

» I, is built as a convex combination of these well-balanced fluxes
— preserves equilibrium as well !

Local subcell monolithic DG/FV e for nonlinear shallow water equations with source terms on unstructured grids



Numerical results

4. Numerical results
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Numerical results — Steady vortex with smooth topography

Test 1 — Order of accuracy assessment

Steady vortex with C*° topography

» Domain: Q = [-5,5]> Degree: k =1,2,3 Mesh: n, = 200 — 12800

» Goal: convergence of the scheme on a smooth solution with a consistent
discretization of the topography source term

k 1 2 3

h Ef a2 Ep q;2 Ep q/2
1 || 9.445E-2 | 2.35 || 1.529E-2 | 2.91 || 4.580E-3 | 4.19
1]l 1.854E-2 | 2.16 || 2.039E-3 | 3.03 || 2.505E-4 | 4.10
1]l 4.158E-3 | 2.07 || 2.491E-4 | 2.97 || 1.465E-5 | 4.00
51| 9923E-4 | — || 3.187E-5 | — || 9.165E-7 | —

Figure: L2-errors between numerical and analytical solutions and convergence rates for i at time t = 0.1
sec.
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Numerical results — Steady vortex with smooth topography 26/33

Figure: Steady vortex — Exact (left) and P* numerical (right) height at final time t = 0.1 sec on 800 cells.
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Numerical results — Well-balancing assessment 27/33

Test 2 — Well-balancing assessment

Well-balancing with dry area

» Domain: Q =[0,2] x [0,1] Degree: k =4 Mesh: n = 2064
» Goal: no stability issue, preservation of water-height positivity

Figure: P* initial solution.
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Numerical results — Dam-break problems

Test 3 — Dam-break problems (1)

Dam-break on a wet bed

» Domain: Q = [0,1000] x [0,200] Degree: k =4 Mesh: nq = 350
» Goal: handling shock waves and rarefaction fronts

10.0 o clovation (1) 10.0 o clovation (1)
) analytical (1) analytical (1)
9.5 9.5
9.0 0.0
:
=85 o =
2 ¥ %8s
8.0
8.0
7.5
7.5
7.0
65 . 7.0
5.5
200 400 600 800 200 400 600 800
x(m) x(m)

Figure: At t = 32 sec, P* pure DG elevation (left)
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and monolithic DG/FV subcells elevation (right).
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Numerical results — Dam-break problems 28/33

IMAG

S
\/
ﬁé
ANTA
I\

X/
7a
AKX

10.00

e
I\
1000
Figure: At t = 18 sec, P* unlimited DG elevation (top), monolithic DG/FV subcells elevation (center) and
map of blending coefficient means per subcell (bottom).

O\ Wonreeuicn Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids



Numerical results — Dam-break problems

Test 3 — Dam-break problems (2)

Dam-break on a dry bed with friction

» Domain: Q = [0,1000] x [0,200] Degree: k =3 Mesh: nq = 350
» Goal: treating wet/dry interfaces, supplemented with friction

B T T E B itn T i B g G B

Figure: Snapshots of P? free surface elevation and blending density profiles for t € [10, 60] sec for kr = 0.5.

UNIVERSITE

O\ wowTpELLIER Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids



Numerical results — Dam-break problems
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Figure: At t = 30 sec, P> elevation (top), discharge norm (center) and map of blending coefficient means
per subcell (bottom).

UNIVERSITE o

UNVERSTE cal subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids



Numerical results — Realistic benchmark

Test 4 — Rock-wave interactions

Single wave collapsing on a Gaussian rock

» Domain: Q = [5,25] x [0,30] Degree: k =6 Mesh: ny = 584

» Goal: assessing robustness and correct shock-capturing in challenging
case

Figure: Unstructured simplicial
mesh P subdivision onto
triangles with ng = 584 cells.
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Numerical results — Realistic benchmark 3

OGNAKIEA
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Figure: Snapshots of IP° elevation at several times (and link to simulation).
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https://sachacardonna.github.io/images/rock_wave_P6RK2.mp4

Conclusion and perspectives

5. Conclusion and perspectives
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Conclusion and perspectives

Ph.D. objectives

We want an ideal scheme to solve the Nonlinear Shallow Water (NSW)
equations, such that we can then study:

wave-structure interactions\

From the theory... to its potential applications...

UNIVERSITE o
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Conclusion and perspectives

Ongoing and upcoming work

What has been done...

B S.C., A. Haidar, F. Marche & F. Vilar, Monolithic DG-FV subcell schemes
for nonlinear hyperbolic system with source terms. Applications to shallow water
asymptotics. In preparation. 2025.

B S.C., F. Marche & F. Vilar, Local monolithic DG-FV subcell scheme for
2D NSW on unstructured grids. In preparation. 2025.

... and what remains!

» Designing a mixed HHO/DG-FV subcells method for wave-structure
interactions;

» Adaptation of the method to moving or deforming meshes via an ALE
framework;

» Extension to Green-Naghdi equations in 2D case.

Feaniie Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids
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Thank you for your attention!

Figure: The Great Wave of Kanagawa, Hokusai, 1830.

& E-mail: sacha.cardonna@umontpellier.fr
@ Website: sachacardonna.github.io
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https://sachacardonna.github.io

Complements

Remark about quadrature on subcells

Figure: Subdivision of a coarse mesh into subcells with their global numbering (left), alongside the
quadrature points for subcell interiors and faces (right).
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Complements

Remark about initialization

Initialization strate

Initialization is performed via subcell averages followed by projection using
P, instead of L? projection or interpolation as usually done in DG schemes

— this guarantees v, € H* at t = 0, and enforces 7, = by, in dry zones

A Since by, is discontinuous across cells, hydrostatic reconstruction is applied
to both DG and subcell FV fluxes.

10.00

500 750
Figure: P? dam-break problem initialization.
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Complements

Remark about hydrostatic reconstruction

Assuring both WB and positivity in numerical fluxes

© Hydrostatic reconstruction framework used on both DG and subcell FV fluxes
— ensures positivity of the water height, even for discontinuous topography

At each interface I'c () (resp. subinterface I'(k)), reconstructed values are
defined:

» Topography rec.: by = max(by , b)), bk = b — max(0, by — )
» Water height/elevation rec.:  Hif = max(0,7; — by), 7 = H + by
AL\
» Modified states: Vi = (ﬁki, Hqui>
k

These are then used in a Lax-Friedrichs-type flux IF*, completed by a correction
term IF¢,(x) to ensure well-balancing:

v

]F:v(k) = F* (‘v,;? ‘\;:7 Z)kv Bkv ncv(k)) + Ich(k)

UNIVERSITE ¢
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Complements

Remark about source term treatment

Alternative discretization of the source term

C CFV

B, =B, "+ (8, -B,")

> 05 = Ve Z (- subcell global blending
Vin SyEVE
—¢,D6 1
» B, = B, dx DG source term
185l s
—C,FV 1 — @
» B, = 5e] B(v;,, Vkb}) dx FV source term
ml| JS¢

c,DG
m

® No significant difference in results — we keep B, = B

Local subcell monolithic DG/FV e for nonlinear shallow water equations with source terms on unstructured grids



Complements

Remark about blending smoothening

Why smoothening blending coefficie

A sharp switch between low and high-order fluxes (i.e., 6mp =0 vs. 0pp = 1)
may cause local oscillations
— blending smoothers designed to mitigate abrupt transitions

» Mean-value smoother (default in experiments):

~ 1
c _ H v
0;, g (- mp = Min | Opmp, 7#]) E Hq
Va Syeve, P SYEVmp

< Less diffusive, smoother transitions
» Minimum-value smoother:

c __ 2 n _ ! ! v
0, = min 0np, 0Omp = min <9mp’55r2|19mp 0q>

— Stronger damping near discontinuities
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