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Primitive equations employed in ocean
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and appropriate initial and boundary conditions. Velocity

modelling (3-D)
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(u,v,w), Pressure P, Temperature T, Salinity S, Density p.

The inviscid non linear shallow-water equations (non conservative form)
They are derived by vertical integration of the momentum and continuity equations in the primitive system assuming:

« Horizontal displacements i.e. ou = ov = /-t_ﬂ\
9z 9z Du
T H<L —— +fkxu+gvVn = 0, H
+ The density p is constant R Dt
+ The hydrostatic equilibrium (22 = —p g) Din(H+n)
0z ————F—+V.u = 0.
+ H remains constant in the following Dt L
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Inertia-gravity and Rossby waves in 2-D

We consider the linear SW system Periodic solutions
u+fkxut+gvn = 0, gl ot

u =
m+HV-u = 0, J n o= fiellrlyrot)

After substitution, the dispersion relation, i.e. w(k,/), is obtained

* w =0: The (slow) geostrophic mode (for f constant).
« w==++/f2+gH(k2+2) : The (fast) inertia-gravity modes
Two limits: « Pure gravity waves : w = ++/gH (k2+/2) when f =0.
« Pure inertial oscillations w = = f when gH(k® + I?) < f2.

By using the quasi-geostrophic approximation we can also obtain a relation for the
+ Rossby mode: w = W with f = fy+ By, f; = 2Qsin g, and A = \/gH/f,.
A2

High frequency inertia-Gravity ~ Low frequency Rossby waves




Let uy, = (up, vp) and 1y, belong to appropriate spaces V, and Wy, resp., with test functions ¢p
and pp. Let {1,},_ 4 denote a partition of the domain Q into a finite number N of elements K.

Continuous variational formulation
N

allh N N
ZL&./ W.q)hdx—i—e’Z:JKe/ kauh-¢th+ZJ gvn,- dpdx=0,

el=1 el=1

N
ZJ anh whderZJ HV -upppdx=0.

el=1 Kei el=1

Yo, € Vy, Vb, € Wy, Appropriate initial and boundary conditions are taken into account.
General framework: consider continuous linear forms

a(“h»(bh) +b(¢h»nh) =<F,py >y v Vp €V, (Ah 7Bf7> (uh) — RHS
b(up,pp) +dmpbp) =< Gop >y, Ybn € Wh. By Dn ) \np '

P and RT and BDM finite elements

NN
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Fourier analysis at the discrete level
» Time is assumed to be continuous (% =jw) and f is held constant.

* The discrete problem leads to a set of discrete equations in space (at node j; =1,2,3,---,
foru and j, =1,2,3,---, forn) on a regular and uniform mesh (the meshlength parameter h
is taken as a constant). In the following biased right triangles are used.

e ) i(kx; +ly; t i(kx; +1ly; t

» Periodic solutions w =aye ( h + Yi +al) and mj, =fige ( J2 + Vi +awl) are sought
where @, and f],; are the Fourier amplitudes, with p=1,2,3---, and ¢=1,2,3,---.

* When linear polynomials are employed to approximate u and n, the velocity and pressure
unknowns are located at triangle vertices and we have p = g = 1 (for symmetry reasons).
However, when mid-side, barycenter, internal, etc ..., nodes are used to locate velocity and
surface-elevation nodal values we have p > 1 and g > 1. For example:

P, RT,, PNC S\ e e
h,g=1) (p,q=3) S\ e e e
IN o0

P1DG ? o Ne N Po ° LN
(p,q=6) N (pg=2) | ® oo

A nx nsystem is obtained for the amplitudes and the dispersion relation is hence a polynomial of
degree n=2p+q or n=p+q in w, leading to the existence of eventual spurious solutions.
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P,,— P,, schemes: spurious elevation modes (dim ker(B!) # 1), e.g. m=1

150
—OX, OY and OD1 Constant H

[

Llnear H n mode of wavelength 3h

Simulation

00,0

0 ! 2;'V3 \T[
* The behavior of the smallest nonzero singular value o, of the discrete divergence operator
is related to the so-called discrete stability inf-sup (LBB) condition for mixed problems

(d)h)ll)h)

inf  sup >0y>0
bEW, ¢,,th [Pnllv Wpllw ) kerst ’

where B is the linear continuous operator defined as
<Bu,b >, ,,=bu,)=[,V-updx, YvacV,vpeW.

* 0, #0is needed when dim(V,) and dim(W,) increase, to avoid a zero eigenvalue of the
problem associated with a stationary spurious n mode (u=0,n € ker(B},), 1 # constant).

 Stabilized FEM (Hughes et al., 1986): retrieving the information lost by the projection l'[vh,
i.e. gradnh—ﬂvhgradnh, for a bad choice of V|, and W, (when there are not enough u,,
compared to n,), as it is the case when grad is not injective, namely dim(ker Bf) > 1.



P,,— P, schemes with m > n: spurious inertial oscillations: w = +f
Theorem (DLR, J.Comp.Phys. 2012) : For all FE pairs with n=2p+ g and p > g, the general
dispersion relation is a polynomial of degree n, such that

w? (wszz)p_q Pogl@) =0,
where Py, (w) is a polynomial of degree 2q in w (inertia-gravity solutions).

Consequences: Such FE pairs are subject to
» Physical geostrophic modes w = 0 of multiplicity g.
» Non physical solutions w = +f, namely spurious inertial modes of multiplicity p—q.

Rossby mode f = fy+ R y, u (9 periods) Rossby wave of index 2, f = Ry, v (5 periods)
Att=0 P, — P, Continuous: —1.14, 1.14 P, —P,: —4.45, 4.45

a@s-—-

- @
on a structured mesh




Potential problems with the choice uy, € H(div)

@ Coriolis f—modes: C-grid and RT, BDM and BDFM elements: dim ker(C) # 0

Inertia part Gravity part
e} We} 2 A2 2 2
(Flav = 1 + (&) (KAZ 4 [H1%)
2 (. .
010 (%)20 = 0052%0052% + 4(3) (san%Jrsmz%)

@ The choice of the space for n needs be compatible in order to avoid spurious pressure
modes. For example, the RT, — P, and BDM, — P, schemes have spurious n modes.

@ The RT,— PPC elements on triangles have gaps and spurious inertia-gravity branches

AT, — Py: 1 fine mesh

DLR et al., SIAM J. Sci. Comput., 2007.

@ The RT,— QPC elements on quads have gaps for n > 2 but no spurious inertia-gravity
branches.



@ The BDM, — P2C pairs on triangles have gaps and spurious Rossby branches.
@ The BDFM, — P1DG element on triangles has gaps but no spurious branches.
@ uy, € H(div): existence of the discrete Helmholtz decomposition requires that the following

diagram commutes, where S is a streamfunction space c H', V c H(div) and W c 2

vi ) .
H'(Q) — H(div,Q) M2 (QQ)  deRham complex (compatible Galerkin, mixed FE)

lmg Lmy Ly D. Arnold et al. Acta Numerica, 2006
v+ V.
S — Vv — w C. Cotter and E. Shipton, J.Comp.Phys., 2012
where V1 = (—9,,3y).

For example, to avoid spurious pressure (n) modes it is required that 7t (V-u) = V-7, (u).

It is found that only the BDFM, — P1DG element satisfies the required embedding properties
and avoid spurious branches. However it generates spectral gaps.

Such a commutative diagram does not exist for P,, — P, schemes.

@ Other choices are possible: bubles (dissipation ?), uy, € H(curl): D-grid type.



Existence of spectral gaps (LR et al., sIAM J. Numer. Anal., 2020)

@ Solve the advection equation with constant coefficient.

@ Use a Fourier analysis for continuous and discontinuous Galerkin approaches and employ
polynomials of degree n.

@ Using upwinding for the discontinuous method.

@ Plot the normalized frequency. The slope at the end of the spectrum is —(2n+1).

All w and w: P4 All w: DG4 w: DG4 w: DG10

[
ap= I\




The PPG and PNC schemes

Discontinuous variational formulation (disjoint open triangular elements K ))

N N N N
ou, X

ZJK Wwbhdx-i-ZJK fk><uh~¢hdx—ZJ gnhV~¢hdx+ZJ p gn'n-¢,ds=0,

el=1""el el=1""el el=1""el el=1 el
N am N N

h * _

> | Grends=3 | Hupvondst Y [ Hunpos=o.
el=1""el el=1""el el=1 el

Vép € Vi, and n* and u* denote the trace of n and u on 9K, (stability and consistency).

Discontinuous elements

N

X d [ d j
gn*ny gnm Yyt (1 -y uln,,)) U andl:meanand jump
i} Nz * Rusanov: y =1
an*my gt mt =YW+ —y) i mlng) | . Roe: y =0
Hu"-ngy H{u}-n 4 ngH[n} « Force:y=1/2.
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PVM method : M. Castro-Diaz and E. Fernandez-Nieto, SIAM J. Sci. Comput., 2012.
To obtain the 2D dispersion relations:

@ Perform the 2D Fourier analysis at the discrete level and derive the dispersion relations.
@ From equations of degree 18 and 9 in w(kh, Ih), obtain the asymptotics as h — 0.

Theorem (DLR, J.Comp.Phys. 2024):
In the limit as mesh spacing h — 0 we obtain the asymptotic results
e The inertia-gravity modes (for all yv): No spurious pressure and no f-modes

wPC = AN Z (k1) B £ Fy(k, 1) B+ O(RP),
wNC = AN+ 7 (K, 1) h* i Z, (K, 1) h® + O(h®)
e The geostrophic mode: No spurious geostrophic modes, except for the Roe scheme
fory #0 Roe: y=0
WP = iZ (k)R + O wPC = 0 and iFk,/)h+O(H)
wNC = i Z (k) R®+O(h) wNC = F(k,I)h+ O(h?)

where ., j=1,2,3,..., are polynomial functions which only depend on k, /, and y.

These results were also obtained very faithfully using numerical simulations (with FENICS).



@ The test examines the evolution of the evolution of an oceanic eddy at midlatitudes.
@ The parameter f is held constant, and the solution should preserve the steady state.
At selected time steps n, a convergence analysis is performed by computing the ratio
o () =0, (") 2

R, (i" = nAt) =
“ HO'(I’O)—O'h/Z(l‘")“Lg’

=1,2,3,...

where o is equal to either 1 or the flow-speed field /12 + v2.

o= o= /U2+V2

4 4
e NC RoE
2 e DG Rus ; 2
DG Roe
1 FV Rus 1 1
FV Roe
0 — ) 0 L
0 5 weeks 10 15 0 5 weeks 10 15

InZ ;/1n2 with h/2 =20km up to 15 weeks of simulation on a uniform mesh. A RK4 temporal

scheme is used as for the next non linear simulations.
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Simulations: non-linear SW equations (conservative form) with f = f, + 3y

PPG Rus (after 15 weeks) PNC Rus (after 15 weeks) VU2 +v2 (att=0)
IS
X
o
[aV)
<
PPG Rus (after 15 weeks) PNC Rus (after 15 weeks) PNC Roe (after 15 weeks)
1S
X
o
<
<

The flow-speed field y/u? + v2 at t = 0 and after 15 weeks of propagation. The legend at t =0 is
kept unchanged up to 15 weeks of simulation.
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Conclusions

@ The discretization of the shallow-water equations usually leads to computational modes.
@ We have proposed to study these problems by using Fourier (dispersion) analyses.

@ The cause of the computational solutions is mainly due to:

> Wrong choice of discrete spaces for the variables u, v and n (spurious n modes).
> An imbalance between the d.o.f. of u,v and n nodal values (inertial modes).

> The use of normal velocities in H(div) (f-modes, spectral gaps).

@ The Fourier analyses show that stabilized DG methods are free of spurious solutions:

> The PINC approximation with v # 0 is highly accurate for all modes.

> Finally, we have obtained numerically a CFL limit of:
* 0.18 for the PPC scheme
*0.30 for the PIVC scheme.

for both the shallow water and advection-diffusion equations.

@ Fourier analysis should be performed for 3D models.



