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How does a Neural Network learn ?

Like a little baby growing up

Copyright: ChatGPT
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Physics-Informed Neural Networks

What is Physics–Informed Neural Networks (PINNs) ?

1 Hybrid approach combining:
Data-driven Neural Networks
Physics-based constraints

2 Key innovation:
Physics equations as
regularization in loss function

3 Advantages:
No mesh dependency
Enhanced interpretability

4 Challenges:
Balancing data fidelity and
physical constraints
Training difficulties

Fig. 1 Data and physics scenarios.

(Karniadakis et al. 2021)
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Learning nonlinear operator for ODEs/PDEs: DeepONet

How it works ?

Fig. 2 Stacked and unstacked DeepONet structure.(Lu et al. 2021)

Branch Net: extract features from input functions: ux 7→ b

Trunk Net: extract spatial-temporal features and discretize the
output function G(u) in space and time: y 7→ t

G (u)(y) ≈
p∑

k=1

bk .tk
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Learning nonlinear operator for ODEs/PDEs: DeepONet

Why it works ?

Universal Approximation Theorem for Operator
Suppose that σ is a continuous non-polynominal function, X is a
Banach Space, K1 ⊂ X , K2 ⊂ R are two compact sets in X and R,
respectively, V is a compact set in C (K1), G is a nonlinear
continuous operator, which maps V into C (K2). Then for any
ϵ > 0, there are positive integers n, p,m, constants cki , ξkij , θ

k
i ,

ζk ∈ R, ωk ∈ R, xj ∈ K1, i = 1, . . . , n, k = 1, . . . , p, and
j = 1, . . . ,m such that∣∣∣∣∣∣∣∣∣∣∣

(G(u)(y)−
p∑

k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju(xj ) + θki


︸ ︷︷ ︸

Branch

σ (ωk .y + ζk )︸ ︷︷ ︸
Trunk

)

∣∣∣∣∣∣∣∣∣∣∣
< ϵ

holds for all u ∈ V and y ∈ K2.
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Wave propagation in 2D

Linear/Airy wave theory

In the case of a flat bathymetry,

Free surface elevation η(x , t):

η(x , t) =
H

2
cos(kx − ωt)

Under the condition that the linear dispersion relation is satisfied:

ω2 = gktanh(kh)

Analytical solution of the velocity potential ϕ(x , z , t):

ϕ(x , z , t) =
Ag

ω

cosh(k(z + h))

cosh(kh)
sin(kx − ωt)
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Wave propagation in 2D

Fully Nonlinear Potential Flow

Fig. 3 Water wave propagation in (x , z, t).

Fig. 4 Sinusoidal wave free surface.

Physical constraints

The governing equation:

∇2ϕ = 0
Bottom boundary:

u · n = ∂ϕ
∂n = 0

Free surface boundary:
∂η
∂t = ∂ϕ

∂z − ∂η
∂x

∂ϕ
∂x

∂ϕ
∂t = −gη− 1

2 |∇ϕ|2 − pa
ρ
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Wave propagation in 2D

Boundary elements method: Numerical Wave tank model (Grilli,
Guyenne, and Dias 2001)

Laplace equation is solved as a boundary integral equation
derived from Green’s second identity, discretized with a
high-order BEM(Harris et al. 2022).

Ani. 1 Periodic wave propagation over a bar.
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Wave propagation Network based on DeepONet

Network structure

Fig. 5 Mapping from boundary condition η(0, t) and spatial-temporal coordinates to

the elevation of the free surface η and the velocity potential ϕ: A denotes the

preprocessing of trunk net inputs and B denotes the residual connection.
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Wave propagation Network based on DeepONet

A: Preprocessing

[x , z, t] [x , σ′, t]
[x , σ′, t, α1cos(2ix), α2sin(2ix),

α3cos(2i t), α4sin(2i t)]
σ′ transformation Fourier features encoding

σ transformation
The time-varying computational domain is fixed, with bathymetry
embedded in the variable σ′

σ′ =
z + h(x)

h(x) + η(x , t)
∈ [0, 1]
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Wave propagation Network based on DeepONet

A: Preprocessing

[x , z, t] [x , σ′, t]
[x , σ′, t, α1cos(2ix), α2sin(2ix),

α3cos(2i t), α4sin(2i t)]
σ′ transformation Fourier features encoding

Fourier features encoding
The input coordinates are extended using Fourier feature encoding
to enhance the ability to predict high-frequency information. Where
i = 0, 1, 2, ..., n, and αi is a trainable variable that automatically
controls the expression of different frequency components.
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Wave propagation Network based on DeepONet

B: Residual/Skip connection(Peyvan and Kumar 2025)

Fig. 6 Connection link

Branch Net:
B1 = Layer1(η(0, t))

B2 = Layer2(B1)

Boutput = Layer3(B1)

Trunk Net:
T1 = Layer1(coords[x , σ′, t, ...])

T2 = Layer2(B1 + T1)

Toutput = Layer3(B1 + B2 + T2)
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Loss functions

How are physical constraints are embedded into the network ?

Due to automatic differentiation in neural networks, the gradients
of the outputs with respect to the inputs, that is, the partial
derivatives could be obtained.

Residuals of physical equations

LLaplace =
∂2ϕ̃

∂x2 +
∂2ϕ̃

∂σ′2
∣∣∇σ′∣∣2 + 2

∂2ϕ̃

∂x∂σ′
∂σ′

∂x
+

∂ϕ̃

∂σ′∇
2σ′

LKinematic =
∂η

∂t
−

∂ϕ̃

∂σ′
∂σ′

∂z
+

∂η

∂x

(
∂ϕ̃

∂x
+

∂ϕ̃

∂σ′
∂σ′

∂x

)

LDynamic =
∂ϕ̃

∂t
+

∂ϕ̃

∂σ′
∂σ′

∂t
+ gη +

1
2

(∂ϕ̃

∂x
+

∂ϕ̃

∂σ′
∂σ′

∂x

)2

+

(
∂ϕ̃

∂σ′
∂σ′

∂z

)2


LBottom =

(
∂ϕ̃

∂x
+

∂ϕ̃

∂σ′
∂σ′

∂x

)
dh

dx
+

∂ϕ̃

∂σ′
∂σ′

∂z
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Loss functions

How about data-driven components ?

Data-driven loss functions

Lη =
1
N

N∑
i=1

(η − η̂)2

Lϕ =
1
N

N∑
i=1

(
ϕ− ϕ̂

)2
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Loss functions

How to balance them ? (Wang, Yu, and Perdikaris 2022)

Total loss function

Ltotal = λ1 · Lη + λ2 · Lϕ + λ3 · LLaplace

+ λ4 · LKinematic + λ5 · LDynamic + λ6 · LBottom

Neural Tangent Kernel weighting

NTKi = ∥∇Li∥2 =

∥∥∥∥∂Li

∂θ

∥∥∥∥
2
⇒ NTKmax = max

1≤i≤6
NTKi

⇒ λi =
NTKmax

NTKi
Trainable variables of network
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Training process

How does the network learn ?

The dataset can consist of analytical solutions, numerical solutions,
or even experimental data.

Fig. 7 Training flow chart
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Flat bottom

Reproducing a sinusoidal wave with a flat bottom.

Prediction of η

η(x , t) = H
2 cos(kx − ωt)

The predictions closely match the
desired analytical solutions

Fig. 8 Relative L2 error of η : 2.407%



Introduction Methodology Results Summary Acknowledgement

Flat bottom

Reproducing a sinusoidal wave with a flat bottom.

Prediction of ϕ

ϕ(x, η, t) = Ag
ω

cosh(k(η+h))
cosh(kh)

sin(kx − ωt)

The predictions closely match the
desired analytical solutions

Fig. 9 Relative L2 error of ϕ at the free surface : 1.456%
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Propagation of the solitary wave over a bar

Bathymetry and solitary wave properties

A trapezoidal bar with a front slope 1/20 and a rear slope 1/10
(Beji and Battjes 1993).

Fig. 10 Solitary wave with a height of 0.12 propagating over a bar
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Propagation of the solitary wave over a bar

Prediction at the free surface

Fig. 11 Comparison of free surface elevation: Relative L2 error: 13.71% and 6.98%
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Propagation of the solitary wave over a bar

Prediction at the free surface

Fig. 12 Free surface elevation and potential at t = 4.0 and 30.0
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Propagation of the solitary wave over a bar

Prediction of ϕ over the entire domain

Ani. 2 Solitary wave propagation over time.
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Propagation of the solitary wave over a bar

Prediction of ϕ over the entire domain

Fig. 13 Relative L2 error variation over time (L̄2 = 3.08%)
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Propagation of the periodic wave over a bar

Prediction at the free Surface

Fig. 14 Comparison of free surface elevation with and without physical constraints.

Data PI
L2In 87.88% 76.96%
L2Re 2.213% 1.821%
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Propagation of the periodic wave over a bar

Prediction at the free surface

Currently, the neural network can accurately reconstruct the
training data, but its generalization to unseen data is limited.

Fig. 15 Reproduced vs Interpolation
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Propagation of the periodic wave over a bar

Prediction at the free surface

Fig. 16 Free surface elevation and potential at t = 18.0 and 18.5
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Propagation of the periodic wave over a bar

Prediction of ϕ over the entire domain

Ani. 3 Sinusoidal wave propagation over time.
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Propagation of the periodic wave over a bar

Prediction of ϕ over the entire domain

Fig. 17 Relative L2 error variation over time (L̄2 = 11.17%)
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Conclusion
1 The sinusoidal wave without bathymetry variation is accurately

reproduced;
2 With bathymetry variation, the propagation of both solitary

waves and periodic sinusoidal waves is also well reproduced;
3 However, both cases demonstrate limited predictive capability

for unseen data

Future work
1 Enhancing the model’s generalization;
2 Further improving its ability to learn features at different

frequencies;
3 Training with multiple waves simultaneously...
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Thank you for your attention !

Return
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