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A fundamental example: the Saint-Venant equations

Classical transport operator:

Di() = Bu() + cu- Va(,).
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A fundamental example: the Saint-Venant equations

Classical transport operator:

Di(+) = 0¢(+) + €u - V3(+).
Vertically averaged transport operator:

D/'() = 0:(-) + €t~ V()

Saint-Venant model

Euler's equations + hydrostatic hypothesis + neglect vertical shear + constant topography:

dh+ (V- ) = 0, o | Dih=—en(vu-a),
dii+ €t - Vi + Vyn =0, 55'34_an:07

with T the z-independent horizontal velocity and h the depth of the water column. Here,
e = A/h is the nonlinearity coefficient, and A the typical wave height.
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Main idea: Redefine the transport operator to introduce stochasticity (e.g. to encapsulate
extreme events/neglected phenomena)

— time-scale separation of the Lagrangian flow:
d)<1_L = U(Xt7 t)dt + O'(Xt, t)th,

with
® X; = random displacement,

® u(x,t) = Eulerian large-scale velocity,

wo(x,t)dWe n
dt

d = unresolved subgrid velocity.
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Main idea: Redefine the transport operator to introduce stochasticity (e.g. to encapsulate
extreme events/neglected phenomena)

— time-scale separation of the Lagrangian flow:
. u(Xe, t)dt
d)(t_L = U(Xt7t)dt+(7(Xt,t)th, -

with

® X; = random displacement, .\

® u(x,t) = Eulerian large-scale velocity, o (Xe, t)dW,

o(x " . . ~ 40k
d “% = unresolved subgrid velocity. i m

Formally, what is cdW;? — a Q-Wiener process
Let 6 : [0, T] — L2(S? R3) a bounded symmetric kernel, then define

(0eF)(x) = /S 5(x,y, OF(y)dy, VF € [2(S,]R?).

Then, define ordW, = Y, ove; dff, and a(x, t) = [ 6(x,y, t)8(y, x, t)dy, where (&) is a
basis of L2(S,R3) and 3! Brownian motions.
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— New transport operator in the stochastic framework (see [Li21], Chapter 2),

De() = 86 +(u" - V)(Jelt+ (0dWe - V)() ~ 2V (a()) o,
— N

transport noise RN .
P stochastic diffusion
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— New transport operator in the stochastic framework (see [Li21], Chapter 2),

De() = 0+ (o' V)t + (0dWe - )() ~ 2V (3()) o, (VS Dl:) = Bu(-) +u- V()
— N

transport noise e
P stochastic diffusion

with v =u— ., us=3(V-a).

Widely studied:

® classical geophysical models [Bau+20; RMC17a; RMC17b; RMC17¢]
stochastic reduced order models [Res+17; Res+21; TCM21]
large eddy simulation models [CMH20; Cha+18a; HM17]
prototypical flow models [Bau+420; Bre+21; Cha+18b]

study of existence/uniqueness of 2D /3D Navier-Stokes solutions [DHM23] and the primitive
equations [DMM25]
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— New transport operator in the stochastic framework (see [Li21], Chapter 2),

De() = 0+ (o' V)t + (0dWe - )() ~ 2V (3()) o, (VS Dl:) = Bu(-) +u- V()
— N

transport noise e
P stochastic diffusion

with v =u— ., us=3(V-a).

Widely studied:

® classical geophysical models [Bau+20; RMC17a; RMC17b; RMC17¢]
stochastic reduced order models [Res+17; Res+21; TCM21]
large eddy simulation models [CMH20; Cha+18a; HM17]
prototypical flow models [Bau+420; Bre+21; Cha+18b]

study of existence/uniqueness of 2D /3D Navier-Stokes solutions [DHM23] and the primitive
equations [DMM25]

What about waves 777
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LU Serre-Green-Naghdi model

Three models studied in the stochastic framework: Saint-Venant, Boussinesq, and
Serre-Green-Naghdi.
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LU Serre-Green-Naghdi model

Three models studied in the stochastic framework: Saint-Venant, Boussinesq, and
Serre-Green-Naghdi.
Vertically averaged transport operator:

D) = dh() + @t + 7d ") - Vu() — SV (371940,
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LU Serre-Green-Naghdi model

Three models studied in the stochastic framework: Saint-Venant, Boussinesq, and
Serre-Green-Naghdi.
Vertically averaged transport operator:

D) = dh() + @t + 7d ") - Vu() — SV (371940,

LU Serre-Green-Naghdi model

On a spatial domain Sy, with = h%./L? is the squared aspect ratio,

D, h= —ehVy - (Tdt + odW, ),

—H 1 .
DT+ Vyndt — EGMVH(g(dG)) = O(1?, ep),

with dG = D (V- T) — e(VH (@ dt + othH)) (- T).
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LU Boussinesq and LU Saint-Venant models
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LU Boussinesq and LU Saint-Venant models

Boussinesq model

Neglect terms of order €2y, i.e consider dG ~ di(Vy - T), then
—H . - H
D, h=—ehVy - (u dt + odW; ),
—H_ 1 h? = 2 2 2
D, T+ Vyndt — zeWH(?(dt(vH 1)) = O(12, ep?, €p).

| simulations LU Water Waves model Conclusion & Further work References
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LU Boussinesq and LU Saint-Venant models

Boussinesq model

Neglect terms of order €2y, i.e consider dG =~ di(Vy - T), then
D/'h= —ehVy - (@ dt + cdW,"),

—H 1 he
DT+ Vindt = 2V (5 (d(Vi - 1)) = O?, e, p).

Saint-Venant model
Neglect terms of order e, i.e dG ~ 0 is fully neglected, then

D'h= —hVy - (@ dt + cd W),
D, + Vindt = O(12, ep).
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Conservation properties in periodic boundary conditions

® The three deterministic models conserve the mass (o fSH h) and the momentum
(x fSH ht). So do their LU counterparts.
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Conservation properties in periodic boundary conditions

® The three deterministic models conserve the mass (o fSH h) and the momentum
(x fSH ht). So do their LU counterparts.

® The deterministic Saint-Venant model conserves the following energy,

2 1
Esy = & hu? + */ h?.
2 Js, 2 Js,

——H
So does its LU counterpart, assuming that odW; and @ are divergence free.

Vater Waves model Conclusion & Further v

vork

References
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Conservation properties in periodic boundary conditions
® The three deterministic models conserve the mass (o fSH h) and the momentum
(x sz ht). So do their LU counterparts.
® The deterministic Saint-Venant model conserves the following energy,

2 1
E5V = 6— hu2 + */ h2.
2 SH 2 Su

. . —H _ .
So does its LU counterpart, assuming that odW; and @ are divergence free.
® The deterministic Serre-Green-Naghdi model conserves another energy, that is

2 1 3
Eson = = | hi?+ f/ h* + ﬂ/ R (V- 1)
2 SH 2 Shu 6 Su

Under the previous assumption, so does its LU counterpart.
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Conservation properties in periodic boundary conditions

® The three deterministic models conserve the mass (o fSH h) and the momentum
(x fSH ht). So do their LU counterparts.

® The deterministic Saint-Venant model conserves the following energy,

2 1
Esy = & hu? + */ h?.
2 SH 2 Su
———H
So does its LU counterpart, assuming that odW; and @ are divergence free.
® The deterministic Serre-Green-Naghdi model conserves another energy, that is

2 1 3

Eson == | hi?+ f/ h* + ﬂ/ R (V- 1)
2 SH 2 Shu 6 Su

Under the previous assumption, so does its LU counterpart.

® The deterministic Boussinesq model does not conserve Esy or Esgy, and its LU counterpart
does not either under the previous assumption.



Numerical simulations
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Numerical simulations — Setup

Periodic boundary conditions on a 2D domain, C-Grid

Double advection method to simulate the noise terms

Noise has a wave shape (sine & cosine)

Initial condition = heap-of-water, divergence-free noise, us = 0
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Numerical simulations — Setup

Periodic boundary conditions on a 2D domain, C-Grid
Double advection method to simulate the noise terms
Noise has a wave shape (sine & cosine)
Initial condition = heap-of-water, divergence-free noise, us = 0

t= 0.00 days, R= infkm, c¢= 31.3 m/s

100

-0.25

—0.50

=0.75

=1.00

n{m)

Conclusion & Further work
(o]e]

Initial surface elevation

References
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Numerical simulations — One realisation

t=0.01 days, R= infkm, c= 31.3 m/s t=0.01 days, R= inf km, c=31.3m/s -
- 1.00 :
0.75 0.75
s
0.50 0.50
6 0.25 0.25
§ 000 E £ 000 £
ey = x4 =
41 —0.25 —0.25
-050 ~0.50
24
-0.75 -0.75
T T T + -1.00 ~1.00
2 4 6 8
x (km) x (km)

Figure: Deterministic (left) and LU-stochastic (right) Saint-Venant models

Code adapted from the one of Dion Hafner (University of Copenhagen).
NB: Possible in 1D — Vincent Duchéne & Pierre Navarro (Université de Rennes).

References
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Numerical simulations — Mean and variance (n=100)

0.100 05
0075
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4\
0025
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g 0000 5 & <
> & > z
3 %
4 £ 4
~0.025 02
2 ~0.050 2 5"’;‘
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00

Figure: Difference between the mean of the LU Saint-Venant and the deterministic model (left).
Variance of the LU Saint-Venant model (right).

References
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LU Water Waves model
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LU Water Waves — Derivation |

Deterministic Water Waves. Let 7 the surface elevation, 1 the potential at the surface and G
the Dirichlet-to-Neumann operator.

dtn = G(Tl)d%

1o o (G + Vi - Vi
dip+ S|VYI* + gn — e =0.

stochastic wave models Numerical simulations LU Water Waves model Conclusion & Further work References
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LU Water Waves — Derivation |

Deterministic Water Waves. Let 7 the surface elevation, 1 the potential at the surface and G
the Dirichlet-to-Neumann operator.

dtn = G(W)d’a
1o o (G + Vi - Vi
dtw+§|Vw\ +8n— 201+ [Vi?) =0.

LU Water Waves. Start from the LU Euler's equations with V - cdW, = 0,
1
D:u+ p—V(pdt +dp!) —ge,dt =0, V-u=0.
0

Moreover, assume u = (v, w)" = V.
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LU Water Waves — Derivation |

Deterministic Water Waves. Let 7 the surface elevation, 1 the potential at the surface and G
the Dirichlet-to-Neumann operator.

dtn = G(W)d%
1o o (G + Vi - Vi
dtw+§|Vw\ +8n— 201+ [Vi?) =0.

LU Water Waves. Start from the LU Euler's equations with V - cdW, = 0,
1
D:u+ p—V(pdt +dp!) —ge,dt =0, V-u=0.
0

Moreover, assume u = (v, w)™ = V®. The boundary conditions are
® horizontally periodic,
® non penetrating at the (flat) lower boundary (i.e. w|,—_p = (0,9P)|,=—» = 0),
® free-surface at the upper boundary.
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LU Water Waves — Derivation |l

Now, assume us = 0 for simplicity, so that

1 1 1 1
A [§V|V¢|z + Vb~ ge. — s+ Vu— 5V (aVu)|dit + oW, Vut - Vdp! =0
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LU Water Waves — Derivation |l

Now, assume us = 0 for simplicity, so that
1 s 1 1 1 -
A [§V|V¢| +Vp—ge, —us- Vu— V- (aVu)|dt + 7dW; - Vu+ = Vdpf = 0.
Po Po
For small enough noises, stochastic terms are negligible compared to the pressure,

1 | 1
4, Vo + [§V|V¢|2 o Vp- gez} dt+ - Vdp{ =0.

stochastic wave models Numerical simulations LU Water Waves model Conclusion & Further work References
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Now, assume us = 0 for simplicity, so that
1 s 1 1 1 -
A [§V|V¢| Vb g~ b5 Vu— V- (aVu)|dt + odW; - Vu+ ~Vdpf =0.
0 0

For small enough noises, stochastic terms are negligible compared to the pressure,

1 5 1 1 -

diV® + [SVIVOP + = Vp - ge,|dt + —Vdp} =0.
2 Po Po

By the hydrostatic hypothesis, p = pog(z — 1) + ps(x,y) and dpy = dp;"*(x,y). Neglecting the
surface pressures ps and pZ, we find

1
d, Vo + 5V|v<1>|2dr + gVndt = 0.
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Now, assume us = 0 for simplicity, so that
1 s 1 1 1 -
A [§V|V¢| Vb g~ b5 Vu— V- (aVu)|dt + odW; - Vu+ ~Vdpf =0.
0 0

For small enough noises, stochastic terms are negligible compared to the pressure,

1 5 1 1 -

diV® + [SVIVOP + = Vp - ge,|dt + —Vdp} =0.
2 o Po

By the hydrostatic hypothesis, p = pog(z — 1) + ps(x,y) and dpy = dp;"*(x,y). Neglecting the
surface pressures ps and pZ, we find

1
d, Vo + 5V|V<1>|2dr + gVndt = 0.
= Bernoulli equation in the LU stochastic setting

1
d:® + §|V¢|2dt + gndt = 0.
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In addition, the kinematic equation at z = 7 reads,
din+ Vy® - Vyndt — 0,Pdt + o dW, o Vun —o?dW, =0,

involving a Stratonovitch transport noise.

References



The location uncertainty formalism (LU) Some st
(e]e]e} 0000 0000 [e]e]e] le} (o]e]

LU Water Waves — Derivation |l
In addition, the kinematic equation at z = 7 reads,
din+ Vy® - Vyndt — 0,Pdt + o dW, o Vun —o?dW, =0,

involving a Stratonovitch transport noise.
Denote by ¢ = ®|,—,, the surface potential — Dirichlet to Neumann operator G

G(UW = (6z¢)|2217 - (VH¢)|z=n . andta
where ¢ is the solution to

Ad = O, cl>|z:n = "/)a (8z¢)|z:—h =0.

stochastic wave models Numerical simulations LU Water Waves model Conc lusion & Further work
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LU Water Waves — Derivation |l
In addition, the kinematic equation at z = 7 reads,
din+ Vy® - Vyndt — 0,Pdt + o dW, o Vun —o?dW, =0,

involving a Stratonovitch transport noise.
Denote by ¢ = ®|,—,, the surface potential — Dirichlet to Neumann operator G

G(UW = (6z¢)|2217 - (VH¢)|z=n . andta
where ¢ is the solution to
Ad = O, cl>|z:n = "/)a (8z¢)|z:—h =0.

Additionally, denote by
F(n)odW; = o*dW; — o™ dW; o V),

so that
din = G(n)Y + F(n)odW,.
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LU Water Waves — Comparison to the deterministic system
By inverting a matrix system, we finally have:
LU Water Waves

din = G(n)y + F(n)odW,,

[G(n)Y + Viuip - Vin)?
2(1+[VnP?)

)Y + Vun - V] _

0.
1+ [Vnl?

1 G
et + 5 [VUP + g - ~ Finoaw; - 1
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LU Water Waves — Comparison to the deterministic system
By inverting a matrix system, we finally have:
LU Water Waves
din = G(n)p + F(n)odW,

1 [G(n) + Vb - Vn)? [G(n)Y + Vun - Vi)
dep + = |V - — F(n)odW, - =0.
W+ S VU +an 2(1+ |Vn[?) () dWs 1+ |V
Deterministic Water Waves
din = G(n),
1 [G() + Vuth - Vim)?
d _ 2 _ = 0.
¥+ SIVYIT +en 20+ VP
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® Systematic method to derive wave models based on physical conservation
® Pathwise symmetry breaking, but symmetric statistically (at least for the three first models)
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® Systematic method to derive wave models based on physical conservation

® Pathwise symmetry breaking, but symmetric statistically (at least for the three first models)
Further work (in progress):

® Implement and test the LU Water Waves model

® Connect the three first LU models to the LU Water Waves one, e.g. as in [Lan13]

¢ Influence of the (non-flat) bottom? Influence of the 1t5-Stokes drift?

® Water waves without the small noise condition?
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Conclusion:

® Systematic method to derive wave models based on physical conservation

® Pathwise symmetry breaking, but symmetric statistically (at least for the three first models)
Further work (in progress):

® Implement and test the LU Water Waves model

® Connect the three first LU models to the LU Water Waves one, e.g. as in [Lan13]

¢ Influence of the (non-flat) bottom? Influence of the 1t5-Stokes drift?

® Water waves without the small noise condition? — idea with small space frequency
condition



The location uncertainty formalism (LU) Some stochastic wave models Numerical simulations LU Water Waves model Conclusion & Further work References

(e]e]e}

[Bau+20]

[Bre+21]

[CMH20]

[Cha+18a]

[Cha-+18b]

0000 0000 00000

References |

Werner Bauer et al. “Deciphering the role of small-scale inhomogeneity on
geophysical flow structuration: a stochastic approach”. In: Journal of Physical
Oceanography 50.4 (2020), pp. 983-1003.

Ridiger Brecht et al. “Rotating shallow water flow under location uncertainty with
a structure-preserving discretization”. In: Journal of Advances in Modeling Earth
Systems 13.12 (2021), e2021MS002492.

Pranav Chandramouli, Etienne Mémin, and Dominique Heitz. “4D large scale
variational data assimilation of a turbulent flow with a dynamics error model”. In:
Journal of Computational Physics 412 (2020), p. 109446.

Pranav Chandramouli et al. “Coarse large-eddy simulations in a transitional wake
flow with flow models under location uncertainty”. In: Computers & Fluids 168
(2018), pp. 170-189.

Bertrand Chapron et al. “Large-scale flows under location uncertainty: a consistent
stochastic framework™. In: Quarterly Journal of the Royal Meteorological Society
144.710 (2018), pp. 251-260.



The location uncertainty formalism (LU) Some stochastic wave models Numerical simulations LU Water Waves model Conclusion & Further work References

(e]e]e}

[DHM23]

[DMM25]

[HM17]

[Lan13]

[Li21]

0000 0000 00000

References |l

Arnaud Debussche, Bérenger Hug, and Etienne Mémin. “A Consistent Stochastic
Large-Scale Representation of the Navier—Stokes Equations”. In: Journal of
Mathematical Fluid Mechanics 25.1 (Jan. 2023), p. 19. DOIL:
10.1007/s00021-023-00764-0. URL:
https://doi.org/10.1007/s00021-023-00764-0.

Arnaud Debussche, Etienne Mémin, and Antoine Moneyron. Stochastic
interpretations of the oceanic primitive equations with relaxed hydrostatic
assumptions. 2025. arXiv: 2502.14946 [math.AP]. URL:
https://arxiv.org/abs/2502.14946.

Souleymane K Harouna and Etienne Mémin. "“Stochastic representation of the
Reynolds transport theorem: revisiting large-scale modeling”. In: Computers &
Fluids 156 (2017), pp. 456—4609.

David Lannes. The water waves problem: mathematical analysis and asymptotics.
Vol. 188. American Mathematical Soc., 2013.

Long Li. “Stochastic modeling and numerical simulation of ocean dynamics”. 2021.
URL: https://hal.science/tel-03207741v1/document.


https://doi.org/10.1007/s00021-023-00764-0
https://doi.org/10.1007/s00021-023-00764-0
https://arxiv.org/abs/2502.14946
https://arxiv.org/abs/2502.14946
https://hal.science/tel-03207741v1/document

The location uncertainty formalism (LU) Some stochastic wave models Numerical simulations LU Water Waves model Conclusion & Further work

(e]e]e}

[RMC17a]

[RMC17b]

[RMC17¢]

[Res+17]

[Res+21]

0000 0000 00000

References |1l

Valentin Resseguier, Etienne Mémin, and Bertrand Chapron. “Geophysical flows
under location uncertainty, Part | Random transport and general models". In:
Geophysical & Astrophysical Fluid Dynamics 111.3 (2017), pp. 149-176.

Valentin Resseguier, Etienne Mémin, and Bertrand Chapron. “Geophysical flows
under location uncertainty, part Il quasi-geostrophy and efficient ensemble
spreading”. In: Geophysical & Astrophysical Fluid Dynamics 111.3 (2017),

pp. 177-208.

Valentin Resseguier, Etienne Mémin, and Bertrand Chapron. “Geophysical flows
under location uncertainty, Part 1ll SQG and frontal dynamics under strong
turbulence conditions”. In: Geophysical & Astrophysical Fluid Dynamics 111.3
(2017), pp. 209-227.

Valentin Resseguier et al. “Stochastic modelling and diffusion modes for proper
orthogonal decomposition models and small-scale flow analysis”. In: Journal of
Fluid Mechanics 826 (2017), pp. 888-917.

References

Valentin Resseguier et al. “Quantifying truncation-related uncertainties in unsteady

fluid dynamics reduced order models”. In: SIAM/ASA Journal on Uncertainty
Quantification 9.3 (2021), pp. 1152-1183.



The location uncertainty formalism (LU) Some stochastic wave models Numerical simulations LU Water Waves model Conclusion & Further work References
(e]e]e} 0000 0000 00000 (o]e]

References 1V

[TCM21] Gilles Tissot, André VG Cavalieri, and Etienne Mémin. “Stochastic linear modes in
a turbulent channel flow”. In: Journal of Fluid Mechanics 912 (2021), A51.



	The location uncertainty formalism (LU)
	Some stochastic wave models
	Numerical simulations
	LU Water Waves model
	Conclusion & Further work
	References

