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A fundamental example: the Saint-Venant equations
Classical transport operator:

Dt(·) = ∂t(·) + ϵu · ∇3(·).

Vertically averaged transport operator:

DH
t (·) = ∂t(·) + ϵu · ∇H(·),

Saint-Venant model
Euler’s equations + hydrostatic hypothesis + neglect vertical shear + constant topography:{

dth + ϵ(∇H · hu) = 0,
dtu + ϵu · ∇Hu + ∇Hη = 0, ⇔

{
DH

t h = −ϵh(∇H · u),
DH

t u + ∇Hη = 0,

with u the z-independent horizontal velocity and h the depth of the water column. Here,
ϵ = A/h is the nonlinearity coefficient, and A the typical wave height.
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The location uncertainty formalism (LU)
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Main idea: Redefine the transport operator to introduce stochasticity (e.g. to encapsulate
extreme events/neglected phenomena)

→ time-scale separation of the Lagrangian flow:

dXt = u(Xt , t)dt + σ(Xt , t)dWt ,

with
• Xt = random displacement,
• u(x , t) = Eulerian large-scale velocity,
• “ σ(x ,t)dWt

dt ” = unresolved subgrid velocity. ≈ 40km

u(Xt , t)dt

σ(Xt , t)dWt

Formally, what is σdWt? → a Q-Wiener process
Let σ̂ : [0,T ] → L2(S2,R3) a bounded symmetric kernel, then define

(σt f )(x) =
∫

S
σ̂(x , y , t)f (y)dy , ∀f ∈ L2(S,R3).

Then, define σtdWt =
∑

i σtei dβi
t , and a(x , t) =

∫
S σ̂(x , y , t)σ̂(y , x , t)dy , where (ei) is a

basis of L2(S,R3) and βi
t Brownian motions.
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→ New transport operator in the stochastic framework (see [Li21], Chapter 2),
Dt(·) = ∂t(·) + (u∗ · ∇)(·)dt + (σdWt · ∇)(·)︸ ︷︷ ︸

transport noise

− 1
2∇ · (a∇(·))︸ ︷︷ ︸

stochastic diffusion

dt,

(
VS Dt(·) = ∂t(·) + u · ∇(·)

)
with u∗ = u − us , us = 1

2 (∇ · a).

Widely studied:
• classical geophysical models [Bau+20; RMC17a; RMC17b; RMC17c]
• stochastic reduced order models [Res+17; Res+21; TCM21]
• large eddy simulation models [CMH20; Cha+18a; HM17]
• prototypical flow models [Bau+20; Bre+21; Cha+18b]
• study of existence/uniqueness of 2D/3D Navier-Stokes solutions [DHM23] and the primitive

equations [DMM25]
• What about waves ???
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Some stochastic wave models
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LU Serre-Green-Naghdi model
Three models studied in the stochastic framework: Saint-Venant, Boussinesq, and
Serre-Green-Naghdi.

Vertically averaged transport operator:

D
H
t (·) = dt(·) + ϵ(u∗dt + σdWt

H) · ∇H(·) − 1
2∇H · (aH∇H(·)),

LU Serre-Green-Naghdi model
On a spatial domain SH , with µ = h2

ref /L2 is the squared aspect ratio,

D
H
t h = −ϵh∇H ·

(
u∗dt + σdWt

H)
,

D
H
t u + ∇Hηdt − 1

h ϵµ∇H
(h3

3 (dG)
)

= O(µ2, ϵµ2),

with dG = DH
t (∇H · u) − ϵ

(
∇H ·

(
u∗dt + σdWt

H))
(∇H · u).
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LU Boussinesq and LU Saint-Venant models

Boussinesq model
Neglect terms of order ϵ2µ, i.e consider dG ≈ dt(∇H · u), then

D
H
t h = −ϵh∇H ·

(
u∗dt + σdWt

H)
,

D
H
t u + ∇Hηdt − 1

h ϵµ∇H
(h3

3 (dt(∇H · u)
)

= O(µ2, ϵµ2, ϵ2µ).

Saint-Venant model
Neglect terms of order ϵµ, i.e dG ≈ 0 is fully neglected, then

D
H
t h = −ϵh∇H ·

(
u∗dt + σdWt

H)
,

D
H
t u + ∇Hηdt = O(µ2, ϵµ).
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Conservation properties in periodic boundary conditions
• The three deterministic models conserve the mass (∝

∫
SH

h) and the momentum
(∝

∫
SH

hu). So do their LU counterparts.

• The deterministic Saint-Venant model conserves the following energy,

ESV = ϵ2

2

∫
SH

hu2 + 1
2

∫
SH

h2.

So does its LU counterpart, assuming that σdWt
H and uH

s are divergence free.
• The deterministic Serre-Green-Naghdi model conserves another energy, that is

ESGN = ϵ2

2

∫
SH

hu2 + 1
2

∫
SH

h2 + ϵ3µ

6

∫
SH

h3(∇H · u)2.

Under the previous assumption, so does its LU counterpart.
• The deterministic Boussinesq model does not conserve ESV or ESGN , and its LU counterpart

does not either under the previous assumption.
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Conservation properties in periodic boundary conditions
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∫
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Numerical simulations
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Numerical simulations – Setup
• Periodic boundary conditions on a 2D domain, C-Grid
• Double advection method to simulate the noise terms
• Noise has a wave shape (sine & cosine)
• Initial condition = heap-of-water, divergence-free noise, us = 0
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Numerical simulations – One realisation

Figure: Deterministic (left) and LU-stochastic (right) Saint-Venant models

Code adapted from the one of Dion Häfner (University of Copenhagen).
NB: Possible in 1D → Vincent Duchêne & Pierre Navarro (Université de Rennes).
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Numerical simulations – Mean and variance (n=100)

Figure: Difference between the mean of the LU Saint-Venant and the deterministic model (left).
Variance of the LU Saint-Venant model (right).
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LU Water Waves model
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LU Water Waves – Derivation I
Deterministic Water Waves. Let η the surface elevation, ψ the potential at the surface and G
the Dirichlet-to-Neumann operator.

dtη = G(η)ψ,

dtψ + 1
2 |∇ψ|2 + gη − [G(η)ψ + ∇Hψ · ∇Hη]2

2(1 + |∇η|2) = 0.

LU Water Waves. Start from the LU Euler’s equations with ∇ · σdWt = 0,

Dtu + 1
ρ0

∇(pdt + dpσ
t ) − gezdt = 0, ∇ · u = 0.

Moreover, assume u = (v ,w)T = ∇Φ. The boundary conditions are
• horizontally periodic,
• non penetrating at the (flat) lower boundary (i.e. w |z=−h = (∂zΦ)|z=−h = 0),
• free-surface at the upper boundary.
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LU Water Waves – Derivation II
Now, assume us = 0 for simplicity, so that

dt∇Φ +
[1

2∇|∇Φ|2 + 1
ρ0

∇p − gez − us · ∇u − 1
2∇ · (a∇u)

]
dt + σdWt · ∇u + 1

ρ0
∇dpσ

t = 0.

For small enough noises, stochastic terms are negligible compared to the pressure,

dt∇Φ +
[1

2∇|∇Φ|2 + 1
ρ0

∇p − gez

]
dt + 1

ρ0
∇dpσ

t = 0.

By the hydrostatic hypothesis, p = ρ0g(z − η) + ps(x , y) and dpσ
t = dpσ,s

t (x , y). Neglecting the
surface pressures ps and pσ

s , we find

dt∇Φ + 1
2∇|∇Φ|2dt + g∇ηdt = 0.

⇒ Bernoulli equation in the LU stochastic setting

dtΦ + 1
2 |∇Φ|2dt + gηdt = 0.
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LU Water Waves – Derivation III
In addition, the kinematic equation at z = η reads,

dtη + ∇HΦ · ∇Hηdt − ∂zΦdt + σHdWt ◦ ∇Hη − σzdWt = 0,

involving a Stratonovitch transport noise.

Denote by ψ = Φ|z=η the surface potential → Dirichlet to Neumann operator G

G(η)ψ = (∂zΦ)|z=η − (∇HΦ)|z=η · ∇Hηdt,

where Φ is the solution to

∆Φ = 0, Φ|z=η = ψ, (∂zΦ)|z=−h = 0.

Additionally, denote by
F (η)σdWt = σzdWt − σHdWt ◦ ∇Hη,

so that
dtη = G(η)ψ + F (η)σdWt .
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LU Water Waves – Comparison to the deterministic system
By inverting a matrix system, we finally have:

LU Water Waves

dtη = G(η)ψ + F (η)σdWt ,

dtψ + 1
2 |∇ψ|2 + gη − [G(η)ψ + ∇Hψ · ∇Hη]2

2(1 + |∇η|2) − F (η)σdWt · [G(η)ψ + ∇Hη · ∇Hψ]
1 + |∇η|2

= 0.

Deterministic Water Waves

dtη = G(η)ψ,

dtψ + 1
2 |∇ψ|2 + gη − [G(η)ψ + ∇Hψ · ∇Hη]2

2(1 + |∇η|2) = 0.
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Conclusion & Further work
Conclusion:

• Systematic method to derive wave models based on physical conservation
• Pathwise symmetry breaking, but symmetric statistically (at least for the three first models)

Further work (in progress):
• Implement and test the LU Water Waves model
• Connect the three first LU models to the LU Water Waves one, e.g. as in [Lan13]
• Influence of the (non-flat) bottom? Influence of the Itō-Stokes drift?
• Water waves without the small noise condition? → idea with small space frequency

condition
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