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Multilayer / Layer-averaged approach

It is based on a splitting of the water column into an arbitrary number of layers which
can be interpreted as a semi-discretisation along the vertical axis. Several definitions
of the layers can be considered.

CIMAV 2025



Multilayer / Layer-averaged approach

It is based on a splitting of the water column into an arbitrary number of layers which
can be interpreted as a semi-discretisation along the vertical axis. Several definitions
of the layers can be considered.

o First attempts (Miglio, Casulli) relied on (horizontal) layers of fixed
thicknesses. In these cases, the free surface motion implied that the fluid
domain does not coincide with the grid: some control volumes are then partially
filled by the fluid. A similar problem occurs for control volumes crossing the
bathymetry and which are also partially filled.
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of the layers can be considered.

o First attempts (Miglio, Casulli) relied on (horizontal) layers of fixed
thicknesses. In these cases, the free surface motion implied that the fluid
domain does not coincide with the grid: some control volumes are then partially
filled by the fluid. A similar problem occurs for control volumes crossing the
bathymetry and which are also partially filled.

@ Another possibility consists in considering the well-known o-coordinates
(Phillips).

@ Another technique is the multilayer (or Laver-averaged) models, that was
introduced under the assumption of hydrostatic pressures.

[T E. Audusse, M.-O. Bristeau, B. Perthame, and J. Sainte-Marie. A multilayer Saint-Venant system with mass
exchanges for shallow water flows. Derivation and numerical validation. ESAIM Math. Model. Numer. Anal.,
45(1):169-200, 2011.
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Multilayer / Layer-averaged approach

It is based on a splitting of the water column into an arbitrary number of layers which
can be interpreted as a semi-discretisation along the vertical axis. Several definitions
of the layers can be considered.

o First attempts (Miglio, Casulli) relied on (horizontal) layers of fixed
thicknesses. In these cases, the free surface motion implied that the fluid
domain does not coincide with the grid: some control volumes are then partially
filled by the fluid. A similar problem occurs for control volumes crossing the
bathymetry and which are also partially filled.

@ Another possibility consists in considering the well-known o-coordinates
(Phillips).

@ Another technique is the multilayer (or Laver-averaged) models, that was
introduced under the assumption of hydrostatic pressures.

[T E. Audusse, M.-O. Bristeau, B. Perthame, and J. Sainte-Marie. A multilayer Saint-Venant system with mass
exchanges for shallow water flows. Derivation and numerical validation. ESAIM Math. Model. Numer. Anal.,
45(1):169-200, 2011.
@ An analogous multilayer discretisation was also considered in several papers in
the literature (Lynett, Bai ...) for the case of hydrodynamic pressure.
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A multilayer partition of the domain
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Figure: Sketch of the multilayer division of the fluid domain.

The fluid domain is divided along the vertical direction into N € N* pre-set layers of
thickness A (#, x) with N + 1 interfaces T',, ! (¢) of equations z =z, | ! (2, x) for
a=0,1,...,Nand x € Ir(1).
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Stationary solution over a bump

(————

(a) Free surface and bottom.

Figure: Free surface evolution and velocity vectors




Stationary solution over a bump

AHHHHHH
 RRRRRARRRRARA

IEEEREEREERERE

(T

fis 12 25 B 55 T fis 12 28 W5 £
x x

(@v=0 b v=10"3

Figure: Test 1. Zoom at the right of the bump Left: Velocity vectors for v = 0. Right: Velocity
vectors for v = 1073
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Flexibility: variable number of layers

[3 Bonaventura, Fernandez-Nieto, Garres-Diaz, Narbona-Reina Multilayer shallow water models with locally variable
number of layers and semi-implicit time discretization. JCP, 364, 209-234 (2018).
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‘We choose a staggered mesh, although the multilayer approach can be employed for any spatial
discretization in principle. We can also use semi-implicit methods.




Applications in granular collapse (Including discretization of 7y;)
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Vertical effects in a granular collapse problem (model with

Distribution of downslope velocity in a granular collapse (6 = 16°, t = 0.3 s):

(1) - multilayer
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@ The multilayer model with the side walls friction term allows us to better reproduce the normal structure of the flow.




Normal profiles of the downslope velocity (model with 7;)

x=0.095 m
t=0.15s

Figure: Normal profiles of the downslope velocity obtained with the p(I1)-MSM (40 layers) for 0 = 22°
and h; = 1.82 mm during granular collapse at different positions (x = 0.095, 0.495, 0.995 m).




scoplastic dar vertical structure (model with

0 = 15° AT TIMES ¢t = 0.5, 1.5 S (MODEL without Ty, To, N = 32)

VELOCITY FIELD log;o(|9:ul)

@ Multilayer model reproduces the lower sheared layer (||D|| > 0) and top plug (unsheared) layer (u(z) constant,
1D} = 0y




vertical structure (model with

0 = 15° AT TIME t = 10 S (MODEL without Ty, T, N = 32)

VELOCITY FIELD
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@ Multilayer model reproduces the lower sheared layer (||D|| > 0) and top plug (unsheared) layer (u(z) constant,
1]} ~ 0)




scoplastic dam brea

vertical structure (model with

VERTICAL PROFILES OF VELOCITY AT DISTANCE Ax; TO THE FRONT
MODEL WITHOUT Ty, T (0 = 25°,t = 14.4 5, N = 32)
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Gray symbols: experiments

Blue lines: multilayer results (dashed line: interface between sheared/plug layers)
Green crosses: analytical profiles with Oyh computed from the experimental height

@ Multilayer model reproduces the velocity profiles observed in the experiments
@ In the experiments, a pseudoplug (||D|| ~ O(e)) zone is observed instead of a plug (|| D|| = 0) zone
@ In the experiments, we observe a change of curvature of the sheared/pseudoplug interface close to the front position




VERTICAL PROFILES OF VELOCITY AT DISTANCE Ax; TO THE FRONT
MODEL WITH Ty, T (0 = 25°,t = 14.4 5, N = 32)

0.02

0.015

2 (m)

0.01

Az =z —a; (mm)

logyo([IDe11)

x (m)

@ The model with normal stress components reproduces both the pseudoplug layer and the change of curvature of the
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Navier-Stokes

Let us consider a constant density p € R for an incompressible fluid, which flows
within the domain

Q1) = {(x,z) €R®: b(x) < z < b(x) +H(t,x)} ,

being b(x) and H(t,x) a bottom topography and the total depth of the fluid.

Op+V-(pU)=0,

O (pU)+V-(pURU) — V-0 =pg,

where o0 = —pl + T

p=p(-g(b+H-2)+q)), TZ(m m)

T Tz
with

g=(g,8) = (0, fg), in Cartesian coordinates,
B (—g sin®, —g cos#)’ in local coordinates,

where g € R is the gravity acceleration. We also introduce the following notation:

= xfgxx
() = b — &
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Asymptotic analysis

()C, 4 [) = (H, ;L[Ea (L/U)?)7 H= Hﬁv pP= Poﬁ, (ua W) = (UIZ7 EUW)v

17 = POUZI? (TXX7 Txzy u) pOU (67/——;7 %\\’;7 67:21) N
(We assume a flow regime where |g.| / (Fr*|g:|) ~ O (1)).
By defining the Froude number Fr = U?/+/|g.|H. the pressure is decomposed as

5= p<F12 <b+H—z) +5§).

The non-dimensional form of the Navier-Stokes system reads

Ot + Ow =0,
Ot + 0() + 0.(uw) + =0, (b + H) + 0ig = —F— 4+ L (com + Lo
t x Z T2 x E0xq = 2 P EOxTxx z 2Txz | »

(8w + Oc(uw) + 9:(w”)) + 0. = (8 T + 0:T)

(tildes are dropped for the sake of simplicity)
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“Asymptotic levels”

B Hydrostatic main order
Ot + O, w =0,

2 e _ & 1
Ou+ 0c(u”) + 0:(uw) + 2 O (b+H)= Frlg] + o (0:7x) -

M Hydrostatic first order
B Weakly non-hydrostatic

B Fully non-hydrostatic
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“Asymptotic levels”

M Hydrostatic main order
Ou~+ 0w =0,

2 L o 8x i
Ou—+ 0:(u”) + 0. (uw) + 7 O (b+H)= g + - (0:72) -

B Hydrostatic first order

Ot + O.w = 0,

Ot + O(8) + 0u(uw) + =0, (b + H) + 20ig = —F— + L (o + Loom

't x 4 I x g = Py 2 P x Txx z zTxz | »
£d.q = % (O + O.7) .

B Weakly non-hydrostatic

B Fully non-hydrostatic
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“Asymptotic levels”

B Hydrostatic main order

B Hydrostatic first order
Ot + 0w =0,

2 1 _ & 1 1
O+ O0:(u”) + O:(uw) + Frza\- (b+H)+ceog= g + p €0xTax + 6@% )

£d.qg = % (O + O.7) .

B Weakly non-hydrostatic
O+ 0w =0,

1 " 1 /1
8,u+8x(u2)+8z(uw)+ﬁax(b+H)+€28X(q2): LA (Eamz),

£ (8w + Oc(uw) + 8.(w*)) +€°0:(q2) = 0.

B Fully non-hydrostatic
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Layerwise approximation: notation

@ We consider a subdivision in the vertical direction of the domain into L € N
shallow layers 2., whose heights are i, fora = 1,...,L.

Qa() = {(02) € R 12010 <2< 20r1p2}

where z = 7,1/, defines the interface separating the layers {2, and Q4.41.

o The total height of the fluid is H = 22:1 hg, and it holds that
ha = Zat172 = Za—1/2-

@ The midpoint of each layer Q¢ 1S Za = Za—1/2 + ha /2.

@ The vertical mesh is defined through the coefficients (¢4 )

{acl,...L} satisfying

L
ho =UoH, with £, €[0,1] and Y flo=1.
a=1
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Layerwise approximation: notation

@ For an arbitrary function f (¢, x, z). We denote byf;t 12 its approximation at the

R +
interface
- = lim + = lim .
fa+l/2 z%za+|/2‘f‘9a7 fa+l/2 T 20412 ‘QaJrl
2<Zq+1/2 >Za41/2

We write f 4.1 /2 if both limits match and f is a continuous function.

_ 1 Za—1/2
@ Averages: [, (f,x) = h—/ f(t,x,2)dz
> Jza_1)2

? :f;—l/Z +fo?+l/2 3; :f;+1/2 +fc;+l/2
e 2 a+1/2 2

@ Variations:

(&f)a =far12 _foil/z [flat1/2 :f:+1/2 ~Jar1p2

CIMAV 2025



Layerwise approximation: velocity, pressure and stress tensor closure

Let us denote by

’

Uo =0, = (taywa)
the velocity in the layer €2, where u, and w, are the horizontal and vertical
components.

@ We assume a linear profile in z for the horizontal velocity within each layer.

ua(Z) = Uq +)\Q(Zfzoz)7 fOfZG [Zafl/szoH»l/Z]a J

@ Ui, the averaged velocity

o )\ its slope.
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Layerwise approximation: velocity, pressure and stress tensor closure

Let us denote by

’

Ua: =0 = (taswa)
the velocity in the layer 2., where u, and w,, are the horizontal and vertical

components.

@ We assume a linear profile in z for the horizontal velocity within each layer.

ua(Z) :ﬁa+>\a(Z—Za)7 for z € [Zafl/z,ZaJrl/z], J

@ Ui, the averaged velocity

@ )\ its slope.

Note: u__ s and ”Z—l /2 the limit values of the horizontal velocity inside layer €2,
at the interfaces z,11/2 and z,—1 /2, respectively, are given by

hoAa N oo

ua+l/2:ﬁa+ 2 s uil/zzﬁa_
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Layerwise approximation: velocity, pressure and stress tensor closure

Let us denote by

!
Uo =0, = (taywa)
the velocity in the layer 2., where u, and w, are the horizontal and vertical
components.

@ For the vertical velocity, looking at the incompressibility condition, we consider
a layerwise parabolic profile:

. h2,
Wa(z) = Wa + @a(z — 2a) + % ((z —za)’ - E) for z € [za—1/2; Zat1/2],

@ The variables ¢a, 10+ can be related to the variables in the horizontal velocity by
means of the incompressibility condition. Concretely, we obtain the constraints

Yo = —Ohla + )\aaxZou
wa = 78)()\047

fora=1,...,L.
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Layerwise approximation: velocity, pressure and stress tensor closure

Let us denote by

,
U, = U|Qa = (Ua,Wa) ,
the velocity in the layer €2, where u, and w,, are the horizontal and vertical
components.
o For the vertical velocity, looking at the incompressibility condition, we consider
a layerwise parabolic profile:

2
Wa(2) = o + palz — 20) + 22 ((Ha)2 - %

: ) for z € [2a—1/2, Za+1/2],

@ The variables ¢a, 10, can be related to the variables in the horizontal velocity by
means of the incompressibility condition. Concretely, we obtain the constraints
Yo = —Ohla + )\aaxZou
wa = 78)()\047

fora=1,...,L.

The limit values at the interfaces are then

— e haﬂpa hzoﬂ/}a + i ha@a h?xwa
Wa+1/2 =Wa + 2 + 12 ’ Wafl/Z = Wa — 2 12 .
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Layerwise approximation: velocity, pressure and stress tensor closure

Concerning the non-hydrostatic pressure g, it is a layerwise cubic function
accordingly to the vertical momentum equation.

@ Itis assumed to be continuous across the interfaces
(Qa(Za+1/z) = CIQ+1(Za+1/2) = 6]a+1/2)~
@ Let us consider the variable 7, satisfying

Ta

azqa(za) = o

o Using the proposed notation, the vertical profile of non-hydrostatic pressure is

34y — 4o Z=Za , ;n =y (@—2a) (2 —2a)’
Ga(z) = 5 TTa = +6 (qa —%)T‘F“((M)a—%) i
for z € [za—1/2; Zat1/2]-
@ Then, g (z) is defined in terms of
qa’ CIa:tl/Z and Ty J
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Layerwise approximation: velocity, pressure and stress tensor closure

We also assume a polynomial approximation, where the coefficient must be defined
in terms of the considered rheology, in order to approximate the viscous terms
appearing in the Navier-Stokes system

(axTxM 817}1,7 av'rxz» 827_2,1)-

Let us consider the following definition of the layerwise stress tensor components,

2 2 3 2
_ Z— Za ha Z— 2« ha
7'1']',04(2) = Tij,a+<ij,a (Z_Za)+£ij,a (% - ﬁ)‘f'%ij,a <%_%(2_Za )

where i,j € {x,z} and we assume Tz o = Tox,a-
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Stress tensor proportional to the strain rate tensor

Denoting the kinematic viscosity coefficient by v, which could be variable, we
consider the stress tensor given by

T =pD(U) where D(U)= % (VU+ (VU)’) .

Therefore, its components are

T = proU, T = T = P%(axw + 81”)7 T = prow.

E.D. Fernindez-Nieto CIMAV 2025



Stress tensor proportional to the strain rate tensor: variable viscosity

@ A goal of this work is to propose models for geophysical flows, which are
represented by appropriate rheological laws.

These laws can be defined through variable viscosity coefficients, which could
depend, for instance, on the velocity and pressure.

Therefore, the viscosity is also a function that must be approximated in the
layer-averaged framework.

We consider a linear approximation of the viscosity within each layer. Thus, it
is defined by

Via(2) = Vi + Vja(@—2a), Oz € [taisa,Zasipa,  ihj € {x,2},

and o = 1,...,L, such that v;; o > 0.

@ We will see that this approach is appropriate for several rheologies.
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Stress tensor proportional to the strain rate tensor: variable viscosity

@ We consider a linear approximation of the viscosity within each layer. Thus, it
is defined by

Vii,a(z) - Vg,a + Vi},oc(z - Za), fOI'Z € [Za71/27za+1/2]7 l7.] S {X, Z}?

and o =1,...,L, such that v o > 0.
o We will see that this approach is appropriate for several rheologies.

Note that we are considering a different viscosity coefficient v o for each
component of the deviatoric stress tensor, thus making broader the range of
applicability of the proposed models. For instance, it is useful in the case of
turbulent flows or, in general, when having different viscosity coefficients along
the horizontal and vertical directions.
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Stress tensor proportional to the strain rate tensor: D(U)

@ A key point in the definition of the approximation of the stress tensor
components is the approximation of du, dyw, O,u and 9.w accounting for the
possible discontinuities at the interfaces z,/» of the velocity components u
and w.

Let us remind that, for a fixed time ¢ > 0, for any vector function
F(1,x,7) € Q C R? being a regular solution within each layer ., for

a=1,...,L, with possible discontinuities at the internal interfaces L2, for
a=1,...,L— 1, we can define the divergence [div(, . F(t, -, -)] in the sense of
distributions

<[div<X’Z)F(Z, . )], ¢> = /Q diV(xyz)F(l‘, X, z)¢(x, z)dxdz

— 78}(204
/[ a+|/2 *Fa+|/2) : ( 1 2 ) ¢ (x,2a41/2) dx
Q a*l

V¢ € D(Q), where:

° F at1/2 (x)
respectively.

are the upper and lower limits of F (¢, x, z) when z tends to 2o 4 1 /2,

o D(Q) is the set of functions of class C>°(£2) with compact support,
o [ the projection of 2 over R, and

o the divergence operator appearing in the double integral has to be understood in the
pointwise sense.
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Stress tensor proportional to the strain rate tensor: D(U)

_ 1 [uasip+ [Wla—1p 1 [tz + Mai
O], = 0.(ua(2)), + e 5 = Au + " .
FYSaYY 1 Wati2+ [Wa- 1 Wlasi/n 4+ Wae
Pw], = 0:(wa(2), + - W]at1/2 - Wa—1/2 R L Wat1/2 : Waz1/2

o These definitions can be seen as a partition of (div(, »F, 1a) for F = (0,u)’,
F=(0,w)

([0uut, -, )], 1) =Z/I holOl dx  ([Ow(t, )], 1a) :Z/I WETI
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Stress tensor proportional to the strain rate tensor: D(U)

—_— — 1 [t]at+1/205Za+1/2 + [Ua—1/20:2a—1/2
Pa, = (a@), - — L ! L
ha 2
1 [Uat1/2052a+1/2 + [Ula—1/20xZa—1/2

= Oidia — AaOiZa — E 2

1 Wat1/20:Za+1/2 + Wa—1/2012a—1/2

ha 2

hawa a he — i [W]a+l/28xza+l/2 + [W]afl/ZaxZafl/Z
12 7% h, 2

Pl = O(wa(2), —

= atwa - SoaaxZoz -

o These definitions can be seen as a partition of (div(, F, 1q) for F = (u,0), and
F = (w,0),

L, L

(Outt, o 10) =3 [ haBad,dx (@owtt N 10) =Y [ oo

a=1"1a a=1"71a
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Stress tensor proportional to the strain rate tensor: Ty (2)

Taking into account the linear profile of the viscosity (26), 7y, is approximated at
each layer by 7y,«, Where we set

Tora(2) = (V)(c)x,a + Vira (2— Za)) (WQ + O e (2 — za))

Note that it can be rewritten under the form

. T K 2 h(21 - T Ko 3
T)cx,oc(z) - ?)cx,a"_Cxx,oc(Z_Zoe)""gxx,a (u - i)"_%xx,a (u

2 24

with the following definition of the components:

Txx,
Cxx,a
Exx,a

Hxx,o

E.D. Fernindez-Nieto

i)
ha

Za—1/2

Za41/2
7-xx,o¢

2
(2)dz = oy, a[Otl], + Viva %@Am

1 0
Vxx,a[axu]a + Vxx,aax)\bh

1
2Vxx,a Ox A,

0.
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Stress tensor proportional to the strain rate tensor: 7,; o (z) and 7y, lz

The approximation of 7, at each layer given by

e b)) — ( Voo + Ve alz — )) (WQ +¢Q(Z*Za)). J

For the approximation of 7, at each layer, we consider

[e3

sz,a(Z) = VX7 * Vrza( — ZU‘) (ma + [ xW]

o 2 2
T (ax@a - waa\’Za)(Z - ZO‘) + a\'d)a (% B %> )
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Laver-averaged LIN-NH,-STRESS model

O:H + 0, (Hu) = 0 J

with

L
u= E Lol
a=1
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Laver-averaged LIN-NH,-STRESS model

OH + 0. (Hu) = 0 J
2
B (haia) + On (m@ + jza) (82| hads (25 + H) + ; (haf.,)

7
= Got1/20:Za+1/2 — Ga—1/20:Za—1/2 + Ox (ha x;’a> + Ka—1/2 — Kay12

tia—1/20a—1/2 — Uat1/2Tav1/2,
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Laver-averaged LIN-NH,-STRESS model

O:H + 0, (Hu) = 0 J

hA N
12
?xx,a
= Got1/20:Zat1/2 = Ga—1/20xZa—1/2 + Os (ha ) ) + Ko—172 — Kavt1)2

+ito—10Ta—172 = Uati/2Lat1/2,s

o (haua>+ax<haui+ )+|gz|ha (o0 + H) + 8, (hod)

At the interfaces, the approximation of the components of the normal projection of
the stress tensor is

1 ?,wuc« + ?xx a+1 ?,v « + ?)W a+1
Ka = - - : 8 Za - = - ’
+1/2 p ( 2 xla+1/2 >
1 7)c" @ + ?xv a+1 Tz @ + T a+1
Kw‘ — _ <y <y ax _ <Ly Ly R
,a+1/2 P (72 la+1/2 72

Where K; 11> = 0 and K| ; is defined by a friction law, for example,

K1/2:*% 1+ (0 )B(Uuz)”]/p 5(|U1/2):5O+ il
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Laver-averaged LIN-NH,-STRESS model

OH + 0 (Hu) = 0 J

B2

Oy (hatia) + O <haua + ) + 182/ haOs (26 + H) + 0s (hag,,)

= Got1/20:Zat1/2 — qa—l/zaxZa—l/Z + Ok (ha ’a> +Ka—1/2—Katip2

+ito—12Ta—172 — Uati/2Tat1/2,s

T'o+1/2 denotes a explicit expression for the mass transference term at the interfaces
L +1/2 in terms of the velocities and the fluid depth

L
Torip= Y L0 (H(up—1u)), fora=1,.. L1
B=a+1
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Laver-averaged LIN-NH,-STRESS model

O:H + 0, (Hu) = 0 J

ha G
12
?xx,oc
= Got1/20:Za+1/2 — Ga—1/20:Za—1/2 + Ox (ha p ) + Ka—1/2 — Kay12

81 (haﬁa) aF ax <haﬁi =F ) T |gz| haav (Zb o H) o av (haqa)

+ito—12Ta—172 — Uati1/2Tat1/2s

hza)\a hikaﬁa ha(qa+l/2 - qafl/Z) hoTeo hiAa —
8t< 12 ) ax( 12 2 20 ar 30 >+ Ol

_ (%+1/2 - %—1/2) T
+G,,0x2a + <T A 30 Oxha
1

= 2 (qa+l/2axza+l/2 + qa—l/ZaxZa—l/Z)

h2 Cxx,a haCxX,oc | _ 1
+ax ( alZp ) aF sz ~axho¢ a4 ; (Txx,aaxZa - Txg,a) — 5 (Kot+l/2 + Kafl/z)

l’l )\ Uo — Uq— I’l )\ ﬁa_”;
_Fa—l/z( Ciza - 2a 1/2) +Fa+1/2< alza + 2a+1/2)7
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Laver-averaged LIN-NH,-STRESS model

- N
O (haWa) + Ok (hauawa + f72> =dqa—1/2 — qa+1/2
XZ,0

T ~ ~
+0x (haT) +Kya172 = Kpat1/2 + Wa—1/2Ta—172 = War12lat1/2,

l [ Trya + Tazati Tuza + Tzatl
K, _ 1 z, z, e Tz, 2z,
Lat1/2 o (72 H2T T,
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Laver-averaged LIN-NH,-STRESS model

_ — _ hpada
O (haWa) + Ox (hauawa + %) =qa-1/2 — Ga+1/2

T - -
+0x (ha X;a> + Kya—1/2 = Kyat1/2 + Wa—12la—1/2 = Wag12lat1/2,

2 2 — 4 2 4 2
) th@a) + 0, (ha@aua + ho)\ozwa) + ho Ao BT — hotg,

12 12 360 12 720
haAawa (Za+l/2 +qa71/2 _ hisza ha XZ, 0
Zalobo b po 4 22 T2 _ g _ o, ’ ZRVR

+=360 Ochet 2 9=\, )t T, *

| _ 1
A= (sz,aaxZa - Tzz,a) - 5 (Kw,afl/z aF Kw,a+l/2)

ha « Wa*waf hoc @ Wa*wa
,Fa71/2< Yo 1/2)+Fa+1/2( P +1/2)7

12 2 12 2
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Laver-averaged LIN-NH,-STRESS model

- N
O (haWa) + Ok (hauawa 4= f72> =dqa—1/2 — Ga+1/2

+0x (ha 7)(; ) + Ky a—1/2 — Ky,atr12 + Wa—1/2La—1/2 — Wag1/2lat1/2,
h Yo
o | 2= ...
, ( ),

h?ﬂ/}a h?ﬂ/}aﬁa h?ﬁ@a}\a hi/\aﬂﬁa h?ﬂba@a

360 120 240
(qa+1/2 76](171/2) — Ta h3 gx"a h2 gx'oc
d, aSxz, aSxz, Bche,
30 9%\ 20, ) T 3600
ha Txz,ox 1
+ﬁp (sz,aaxZa - sz,a) ar ]2p axha - E (Kw,a+l/2 - Kw,afl/Z)
T hzzld)a _ haﬁpa Wa — V"&afl/Z
*=12\ 7360 24 12
hiwa haSOa Wa — wa+l/2
r
* a“/z( 360 T 24 T 12
E.D. Fernindez-Nieto
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Laver-averaged LIN-NH,-STRESS model

Combined with the following constraints,

Pa = — xua+)\a8xZa7 Oé:],...,L.
wa:_ax)\om Oé:],...,L7
— ha«&»l@a«kl hi+1¢a+l — hOLLpDc h%ﬂ/]a
Ui Y Wa = o 12
_ hat1)a _ haXa
=(ua+1*%7ua7 > )6xza+1/z, a=1,...,L—1.
= +

_ h Wil = Wi
Ohll] — A10x21 — — O\ — 2 —.

U 10x21 6 1+ /2
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Laver-averaged LIN-NH,-STRESS model

‘We consider the following notation for the velocity unknowns:

o 2\/§3 a 2\/§7 a 12\/33

and we set the following notation for the stress tensor components,

R» ~ haua
2\/§ ) XZ,0¢ 12\6 .

E.D. Fernindez-Nieto
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Laver-averaged LIN-NH,-STRESS model

OH + 0, (Hu) =0,

al(haxa) + ax(haxaﬁa) + Fa + vNHQa = Saax (Zb + H) + arDT,a
+Tat12GE —Tas1pGa + GE, — G7,,

Var - Xa =0,
where
Uq hcx?xx,a
Aa q. 1 hazxx,a
Xo = Wa B Qa = qa—1/2 D‘r,a = - hanz,a 5
¢a T P hasz,a
Yo hoRz,a
and
—pKaox1,2
n 1 Zxx,aax'Za:tl/Z + \/g ((?xx,aaxZa - ?xz,a) - pKod:l/Z)
GT,a = - _pKw,ozil/Z )
P sz,aaxzailﬂ + \/§ ((sz,aaxza - Fzz,oz) - pKw,ail/Z)

Zsz,a + Vv 15 (sz,aatZa - Zzz,oz) + \/§ (sz,aaxzaj:l/Z - pKw,a:l:l/Z)
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Laver-averaged LIN-NH,-STRESS model

Theorem (Energy balance)

N W 342 3 _

h ha)\ﬂ - ha)\a aWWa

o, <ZE> + 0 Z(ﬁa (Ea+|gz|ha§+ 2 +haqa>+%
a=1

a=1
hsa)\oz ala hi @ hzzx a T Ya—
+ Do +A < . + (q +1/2 — 4. 1/2)

360 *\ 30 20

1 - — h3 )\QC)JX @ — — h3 LPCXCX' @ hs wagx' @
- hO{ b xx,« ¥ hOt ol Xz, 2 = 2 =
p<”T’+ 12 MeWaTwe t TR 4 000

<_72/~a+1/2 {Tma ([8 U] + O e (Z—Za))

Za—1/2

reald) ([azu]a - TO] + (B0 — o) 2 — 22

+0xa (@ ZZ) ) + Tz,0(2) (Wa +wa(z—za)> } dz

(ﬁo + @') (1 + (Oxb) )3/ (”1/2)2'

AT (hara) + (hapa)® | (Bt0a)’ h
Fo = o 2 24 T a0 tled (Zb+5>
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Laver-averaged LIN-NH,-STRESS model

Let us consider a stress tensor proportional to the strain rate tensor. Then,
LIN-NH»-STRESS model satisfies the dissipative energy balance, where the
right-hand side is non-positive, being

% Z /z“*‘“ [(Vg,a ol —za)> (W+ Bea(z — zcx))2
(

a=1"*“a— 1/2
0

Vo § Viali ~ 20)) ([azu] + W] + (Bepa — PaBeza) (2 — 2a)
(z—z0)% K
+axwa(f 24))
2
(ot e ) (B + e —20) |

% (,30 + %) (1+@07)" ()" <0

2
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Summary of models

Model Disc. spaces Dimension Unknowns Max. degree of Approximated
(Ua, Wars Ga) derivatives model
H
LIN-NH,-STRESS Py, Py, P {fa; Ao} avi S
-NH, - 1, P2, P3) 8L+1 (Fa, Pos Pa} 2 Navier-Stokes
(o) @ «
{0 9a—1/2:Ta}
H
{tia, Ao} .
LIN-NH | -STRESS Py, Py, ) 6L+1 (s 00} 2 Navier-Stokes
{4 9a—1)2}
LIN-H-STRESS Py, Py, P3) 2L+1 (@ H)\ } 4 (gf‘v\;liggsl?c&:;)
H
LIN-NH, (P, Py, P3) 8L+1 {WECMC:&, :\o;ga} 1 Euler
{0 da—1/2:Ta}
H
LIN-NH; Py, Py, Py) 6L+1 {{;a’ ;"‘}i 1 Euler
{0 qa—1)2}

Table: Summary of models introduced in this work, discrete spaces for uq (z), wa (z), ga (2).
unknowns, maximum degree of the derivatives appearing in each model and the original model
that is approximated.




Uniform flows: Dry granular flows with z(7)-rheology

In the case of granular flows, the viscosity is

gsinf (H — z)

\10ul* /4 + 62

being ¢ a regularisation parameter. The following profiles are obtained

Van (Z) =

2
tan(2) = 519 (H3/2 —(H - Z)3/2) ’

87”2111(2) = Iom, (1)
TXz,an(Z) = gsin@ (H — Z) s

with

I — 570 (m> /g c0sB,

Lo — tan @

being ds, @, lo, s, 42 constant parameters depending on the granular material.
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o u - analytical N
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Herschel-Bulkley viscoplastic fluids

Concerning Herschel-Bulkley fluids, the regularised viscosity coefficient is given by

7+ K |O.u

\/ 10u* /4 + 82

with 7y, K and n constant rheological parameters.
The flow can be split into a lower sheared layer with height /. defined by

n

Van(Z) =

Ty
he=H— ——,
gsiné

and the (pseudo-)plug top layer, with thickness H — h.. Then, the analytical solution

reads for z < h,
NG
Uan(2) = Uplug | 1 — (1 - *) )
he

B 1/n (1)
az"tall(z) = (gSII{II(g) (h" - Z)l/n>

Tezan(2) = pgsinf (H — z) ,

and we have U (2) = Uplug,Ozttan = 0, and |Txz an(z)| < 7y, for z > he with

. 1/n
- n gsm0 h(.n+1)/n
PR (n+ 1) K ‘ ’
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Herschel-Bulkley viscoplastic fluids

In this case we consider a test where a material with height H = 0.05 and a slope
with angle 6 = 20° are taken. The rheological parameters are 7, = 0.033,
K =0.026 and n = 0.33.

0.05 0.05
004 (a) (b)
X 0.04
o - analytical
o=, linear
0.03 U, constant 0.03 g o % analytical
" z=h, N 8.u],, - u, linear
0.02 0oz | z=h,
& %%%
0.01 et 0.01 ‘“’%OOODOO
ok it 0000
0 A.D—D‘@egg 0 0000000
0 05 1 0 50 100
u d.u
0.04 0.05 :
! o 7, - analytical
. (o“) ° 0.04 1 (d> ——Tzza - Uq COnstant
0.03 b000° ° © . | - u, linear
_ - u, linear
f 0.03 i 2= h,
© 0.02 0.04 g ! n |
o v - analytical 0.02 |
0:02-ll— Vo - ta constant I
0.01 v -y linear 0.01 5 o
0 — 1 M,
0 100020003000 0 l e %
0 0.05 0.1 0.15 0 7005 0.1 0.15 02
v Tos

Figure: Comparison between the analytical vertical profile

s (grey circles) and layerwise
(19 £




Herschel-Bulkley viscoplastic fluids

0.05 ; 0.05 ‘
! (a) i b) o 7, - analytical
1 : Tyza - Ug constant
004 I 0.04 i e Tana - g linear
| .Qf’& | o7y - 1, linear
0.03 R 0.03 ! z=h,
N i sw;n“ . :
0.02 ! TP 0.02 ; "
0.01 | e 0.01 ! M
! o ! e
o ! S N .
0 7005 0.1 0.15 0.2 0 005 0.1 0.15 0.2

Txz Trz

Figure: Comparison between the analytical vertical profiles (grey circles) and layerwise
approximations with constant (solid red lines) and linear (dot-dashed blue and dotted green
lines) horizontal velocity for the stress tensor component 7y, where 7y, denotes the
second-order correction of Ty;,« . (a) 8 layers; (b) 16 layers.
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Dispersion relations of some Layer-averaged models

[0 LDNH models LDNHO (Po, Po, Pl) and LDNHz (]P)o, ]P)l . ]P)z)

@ E.D. Fernandez-Nieto, M. Parisot, Y. Penel, J. Sainte-Marie. A hierarchy
of dispersive layer-averaged approximations of Euler equations for free
surface flows. Commun. Math. Sci., 16(05):1169-1202, 2018.

[0 LIN-NH models LIN-NH; (P,, P, P;) and LIN-NH, (P, IP», IP3)

@ C. Escalante, E. Fernandez-Nieto, J. Garres-Diaz, T. Morales de Luna,
Y. Penel. Non-hydrostatic layer-averaged approximation of Euler system
with enhanced dispersion properties. Computational and Applied
Mathematics, 177,42, 2023.
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Dispersion relation of LDNH models

There exists a plane wave solution (I:I Jlhoy Wa @a) ¢/ (o the linearised version

of (LDNH, ), ¢ 1,y Provided the following dispersion relation holds

W = R (Ane, £) (1)

where ¢y = +/gHos, e = (1,...,1) eRY, A, =T, —|—x23({la}a).

o For a given number of layers N > 4, the dispersion relation (1) can be made
explicit in the homogeneous case £, = %,
2
2 w Pn (kH 0)
cy(kHy) = — = ——%.
N< 0) ngHo QN(kH())
@ When the number N of layers increases, the celerity cy converges to the celerity
associated to the Euler equations obtained from the Airy wave theory:
tanh(kHo)

Chiry (KH0) = T kHy
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Conclusions

o Several layer-averaged models with layerwise linear horizontal velocity and
non-hydrostatic pressure for the Navier-Stokes system are proposed.

@ We focus on an appropriate definition of the terms that come from viscous
contributions for a general stress tensor.

o In particular, we give detailed definitions of all components of the stress tensor
when it is proportional to the strain rate tensor.

o In that case, the approximations of the derivatives of the velocity are inspired by the
theory of distributions, in order to account for the possible discontinuities of the
velocity at the internal interfaces.

@ These models satisfy a dissipative energy balance, where the right-hand side is
written in integral form.
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Conclusions

@ An important remark is the fact that all terms in these models are approximated
to second-order accuracy, except for 7y; . Concretely, it is a first-order
approximation, due to the fact that J.u is layerwise constant. However, we also
propose a correction allowing us to obtain the second-order accuracy. This
corrected model satisfies a dissipative energy balance up to second order.

@ These and other models are also obtained from an asymptotic analysis of the
Navier-Stokes system, for different orders of magnitude of the shallowness
parameter (¢).

@ The proposed layerwise linear approach is effective for some geophysical flows,
including complex viscoplastic fluids, in the uniform configuration, where it is
possible to get analytical solutions.

@ Previous models with piecewise constant horizontal velocity are particular
cases.

@ Enhanced dispersion relation for LDNH and LIN-NH models.
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